1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphological changes of gonad and gene expression patterns during desexualization in Dugesia japonica (Platyhelminthes: Dugesiidae)

      , , , , ,

      Zoologia

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Planarians, the representatives of an ancient bilaterian group with complex reproductive system and high regenerative capabilities, are model system suitable for studying the basic molecular requirements for the development of the reproductive system. To further explore the morphological changes of the gonads during desexualization and the molecular events of the genes controlling the reproductive system development in planarians, we have investigated the histological changes of ovary and testis by paraffin section and the expression patterns of reproductive-related genes by the quantitative real-time PCR in Dugesiajaponica Ichikawa & Kawakatsu, 1964, upon starvation. The four genes, Djprps, DjvlgA, DjvlgB and Djnos, have been selected. The research results show that the degradation of ovary changes from outside layer to inside, and the testis changes are opposite; the reproductive capacity of the planarians starts to be damaged from the 17 th to 25 th days and to disappear completely from the 26 th to 37 th days during starvation. The expression patterns of the four genes exhibit the obvious dynamic variations during their desexualization, which indicates that these genes might be involved in gonad development.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Vasa genes: emerging roles in the germ line and in multipotent cells.

          Sexually reproducing metazoans establish a cell lineage during development that is ultimately dedicated to gamete production. Work in a variety of animals suggests that a group of conserved molecular determinants act in this germ line maintenance and function. The most universal of these genes are Vasa and Vasa-like DEAD-box RNA helicase genes. However, recent evidence indicates that Vasa genes also function in other cell types, distinct from the germ line. Here we evaluate our current understanding of Vasa function and its regulation during development, addressing Vasa's emerging role in multipotent cells. We also explore the evolutionary diversification of the N-terminal domain of this gene and how this impacts the association of Vasa with nuage-like perinuclear structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A functional genomic screen in planarians identifies novel regulators of germ cell development.

            Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra.

              The vasa (vas)-related genes are members of the DEAD box protein family and are involved in germ cell formation in higher metazoans. In the present study, we cloned the vas-related genes as well as the PL10-related genes, other members of the DEAD box protein family, from lower metazoans: sponge, Hydra and planaria. The phylogenetic analysis suggested that the vas-related genes arose by duplication of a PL10-related gene before the appearance of sponges but after the diversion of fungi and plants. The vas-related genes in Hydra, Cnvas1 and Cnvas2 were strongly expressed in germline cells and less strongly expressed in multipotent interstitial stem cells and ectodermal epithelial cells. These results suggest that the vas-related genes occur universally among metazoans and that their expression in germline cells was established at least before cnidarian evolution.
                Bookmark

                Author and article information

                Journal
                Zoologia
                Zoologia
                Pensoft Publishers
                1984-4689
                August 22 2018
                August 22 2018
                : 35
                : 1-7
                Article
                10.3897/zoologia.35.e21933
                © 2018

                Comments

                Comment on this article