47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methylation alterations are not a major cause of PTTG1 missregulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear.

          Method

          We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus.

          Conclusion

          Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of missregulation associated to PTTG1 over-expression.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          DNA hypomethylation and human diseases.

          Changes in human DNA methylation patterns are an important feature of cancer development and progression and a potential role in other conditions such as atherosclerosis and autoimmune diseases (e.g., multiple sclerosis and lupus) is being recognised. The cancer genome is frequently characterised by hypermethylation of specific genes concurrently with an overall decrease in the level of 5 methyl cytosine. This hypomethylation of the genome largely affects the intergenic and intronic regions of the DNA, particularly repeat sequences and transposable elements, and is believed to result in chromosomal instability and increased mutation events. This review examines our understanding of the patterns of cancer-associated hypomethylation, and how recent advances in understanding of chromatin biology may help elucidate the mechanisms underlying repeat sequence demethylation. It also considers how global demethylation of repeat sequences including transposable elements and the site-specific hypomethylation of certain genes might contribute to the deleterious effects that ultimately result in the initiation and progression of cancer and other diseases. The use of hypomethylation of interspersed repeat sequences and genes as potential biomarkers in the early detection of tumors and their prognostic use in monitoring disease progression are also examined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pituitary tumor-transforming gene: physiology and implications for tumorigenesis.

            Pituitary tumor-transforming gene-1 (PTTG1) is overexpressed in a variety of endocrine-related tumors, especially pituitary, thyroid, breast, ovarian, and uterine tumors, as well as nonendocrine-related cancers involving the central nervous, pulmonary, and gastrointestinal systems. Forced PTTG1 expression induces cell transformation in vitro and tumor formation in nude mice. In some tumors, high PTTG1 levels correlate with invasiveness, and PTTG1 has been identified as a key signature gene associated with tumor metastasis. Increasing evidence supports a multifunctional role of PTTG1 in cell physiology and tumorigenesis. Physiological PTTG1 properties include securin activity, DNA damage/repair regulation and involvement in organ development and metabolism. Tumorigenic mechanisms for PTTG1 action involve cell transformation and aneuploidy, apoptosis, and tumorigenic microenvironment feedback. This paper reviews recent advances in our understanding of PTTG1 structure and regulation and addresses known mechanisms of PTTG1 action. Recent knowledge gained from PTTG1-null mouse models and transgenic animals and their potential application to subcellular therapeutic targeting PTTG1 are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak.

              Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2008
                21 April 2008
                : 8
                : 110
                Affiliations
                [1 ]Service of General Surgery-B, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
                [2 ]Department of Structural Genomics, Neocodex SL, Avda Charles Darwin 6 Acc A. Seville, 41092, Spain
                [3 ]Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, 41013, Spain
                Article
                1471-2407-8-110
                10.1186/1471-2407-8-110
                2377271
                18426563
                0749f489-e632-4f31-8e21-131d62e5d6fa
                Copyright © 2008 Hidalgo et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 August 2007
                : 21 April 2008
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article