40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies

      review-article
      1 , 1 ,
      Saline Systems
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Interactions between macromolecules and ions: The Hofmeister series.

          The Hofmeister series, first noted in 1888, ranks the relative influence of ions on the physical behavior of a wide variety of aqueous processes ranging from colloidal assembly to protein folding. Originally, it was thought that an ion's influence on macromolecular properties was caused at least in part by 'making' or 'breaking' bulk water structure. Recent time-resolved and thermodynamic studies of water molecules in salt solutions, however, demonstrate that bulk water structure is not central to the Hofmeister effect. Instead, models are being developed that depend upon direct ion-macromolecule interactions as well as interactions with water molecules in the first hydration shell of the macromolecule.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments.

            All microorganisms possess a positive turgor, and maintenance of this outward-directed pressure is essential since it is generally considered as the driving force for cell expansion. Exposure of microorganisms to high-osmolality environments triggers rapid fluxes of cell water along the osmotic gradient out of the cell, thus causing a reduction in turgor and dehydration of the cytoplasm. To counteract the outflow of water, microorganisms increase their intracellular solute pool by amassing large amounts of organic osmolytes, the so-called compatible solutes. These osmoprotectants are highly congruous with the physiology of the cell and comprise a limited number of substances including the disaccharide trehalose, the amino acid proline, and the trimethylammonium compound glycine betaine. The intracellular amassing of compatible solutes as an adaptive strategy to high-osmolality environments is evolutionarily well-conserved in Bacteria, Archaea, and Eukarya. Furthermore, the nature of the osmolytes that are accumulated during water stress is maintained across the kingdoms, reflecting fundamental constraints on the kind of solutes that are compatible with macromolecular and cellular functions. Generally, compatible solutes can be amassed by microorganisms through uptake and synthesis. Here we summarise the molecular mechanisms of compatible solute accumulation in Escherichia coli and Bacillus subtilis, model organisms for the gram-negative and gram-positive branches of bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioenergetic aspects of halophilism.

              Examination of microbial diversity in environments of increasing salt concentrations indicates that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis for H2 + CO2 or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. Occurrence of the different metabolic types is correlated with the free-energy change associated with the dissimilatory reactions. Life at high salt concentrations is energetically expensive. Most bacteria and also the methanogenic Archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. All halophilic microorganisms expend large amounts of energy to maintain steep gradients of NA+ and K+ concentrations across their cytoplasmic membrane. The energetic cost of salt adaptation probably dictates what types of metabolism can support life at the highest salt concentrations. Use of KCl as an intracellular solute, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic-compatible solutes. This may explain why the anaerobic halophilic fermentative bacteria (order Haloanaerobiales) use this strategy and also why halophilic homoacetogenic bacteria that produce acetate from H2 + CO2 exist whereas methanogens that use the same substrates in a reaction with a similar free-energy yield do not.
                Bookmark

                Author and article information

                Journal
                Saline Systems
                Saline Systems
                BioMed Central
                1746-1448
                2008
                28 April 2008
                : 4
                : 4
                Affiliations
                [1 ]Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
                Article
                1746-1448-4-4
                10.1186/1746-1448-4-4
                2412884
                18442383
                07555d97-89be-43c1-b228-fe9bbf1de18b
                Copyright © 2008 Saum and Müller; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2008
                : 28 April 2008
                Categories
                Review

                Ecology
                Ecology

                Comments

                Comment on this article