6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IGF2‐derived miR‐483‐3p associated with Hirschsprung's disease by targeting FHL1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic mi RNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR‐483‐3p along with its host gene IGF2 (Insulin‐like growth factor 2) was found down‐regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR‐483‐3p via dual‐luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SHSY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR‐483‐3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR‐483‐3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 si RNA may inverse the function of miR‐483‐3p inhibitor. This study revealed that miR‐483‐3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Role of insulin-like growth factors in embryonic and postnatal growth.

          A developmental analysis of growth kinetics in mouse embryos carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I), IGF-II, and the type 1 IGF receptor (IGF1R), alone or in combination, defined the onset of mutational effects leading to growth deficiency and indicated that between embryonic days 11.0 and 12.5, IGF1R serves only the in vivo mitogenic signaling of IGF-II. From E13.5 onward, IGF1R interacts with both IGF-I and IGF-II, while IGF-II recognizes an additional unknown receptor (XR). In contrast with the embryo proper, placental growth is served exclusively by an IGF-II-XR interaction. Additional genetic data suggested that the type 2IGF/mannose 6-phosphate receptor is an unlikely candidate for XR. Postnatal growth curves indicated that surviving Igf-1(-/-) mutants, which are infertile and exhibit delayed bone development, continue to grow with a retarded rate after birth in comparison with wild-type littermates and become 30% of normal weight as adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.

            Proper coordination of cholesterol biosynthesis and trafficking is essential to human health. The sterol regulatory element-binding proteins (SREBPs) are key transcription regulators of genes involved in cholesterol biosynthesis and uptake. We show here that microRNAs (miR-33a/b) embedded within introns of the SREBP genes target the adenosine triphosphate-binding cassette transporter A1 (ABCA1), an important regulator of high-density lipoprotein (HDL) synthesis and reverse cholesterol transport, for posttranscriptional repression. Antisense inhibition of miR-33 in mouse and human cell lines causes up-regulation of ABCA1 expression and increased cholesterol efflux, and injection of mice on a western-type diet with locked nucleic acid-antisense oligonucleotides results in elevated plasma HDL. Our findings indicate that miR-33 acts in concert with the SREBP host genes to control cholesterol homeostasis and suggest that miR-33 may represent a therapeutic target for ameliorating cardiometabolic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and activity of putative intronic miRNA promoters.

              MicroRNAs (miRNAs) are RNA sequences of approximately 22 nucleotides that mediate post-transcriptional regulation of specific mRNAs. miRNA sequences are dispersed throughout the genome and are classified as intergenic (between genes) or intronic (embedded into a gene). Intergenic miRNAs are expressed by their own promoter, and until recently, it was supposed that intronic miRNAs are transcribed from their host gene. Here, we performed a genomic analysis of currently known intronic miRNA regions and observed that approximately 35% of intronic miRNAs have upstream regulatory elements consistent with promoter function. Among all intronic miRNAs, 30% have associated Pol II regulatory elements, including transcription start sites, CpG islands, expression sequence tags, and conserved transcription factor binding sites, while 5% contain RNA Pol III regulatory elements (A/B box sequences). We cloned intronic regions encompassing miRNAs and their upstream Pol II (miR-107, miR-126, miR-208b, miR-548f-2, miR-569, and miR-590) or Pol III (miR-566 and miR-128-2) sequences into a promoterless plasmid, and confirmed that miRNA expression occurs independent of host gene transcription. For miR-128-2, a miRNA overexpressed in acute lymphoblastic leukemia, ChIP analysis suggests dual regulation by both intronic (Pol III) and host gene (Pol II) promoters. These data support complex regulation of intronic miRNA expression, and have relevance to disregulation in disease settings.
                Bookmark

                Author and article information

                Contributors
                hx8817@126.com
                twbcn@njmu.edu.cn
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                02 August 2018
                October 2018
                : 22
                : 10 ( doiID: 10.1111/jcmm.2018.22.issue-10 )
                : 4913-4921
                Affiliations
                [ 1 ] Department of Pediatric Surgery Children's Hospital of Nanjing Medical University Nanjing China
                [ 2 ] State Key Laboratory of Reproductive Medicine Institute of Toxicology School of Public Health Nanjing Medical University Nanjing China
                [ 3 ] Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
                Author notes
                [*] [* ] Correspondence

                Weibing Tang

                Email: twbcn@ 123456njmu.edu.cn

                and

                Hongxing Li

                Email: hx8817@ 123456126.com

                Author information
                http://orcid.org/0000-0002-3582-3408
                Article
                JCMM13756
                10.1111/jcmm.13756
                6156468
                30073757
                0756d8c1-434b-48eb-93b8-c0a206ea7304
                © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 April 2018
                : 09 June 2018
                Page count
                Figures: 4, Tables: 0, Pages: 9, Words: 5480
                Funding
                Funded by: Natural Science Foundation of China
                Award ID: NSFC 81700449
                Award ID: NSFC 81570467
                Award ID: NSFC 81701493
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                jcmm13756
                October 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.4.9 mode:remove_FC converted:26.09.2018

                Molecular medicine
                four and a half lim domains 1,gene regulation,hirschsprung's disease,insulin‐like growth factor 2,mir‐483‐3p

                Comments

                Comment on this article