35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis.

          Autophagy is a process for turnover of intracellular organelles and molecules that protects cells during stress responses. We undertook this study to evaluate the potential roles of Unc-51-like kinase 1 (ULK1), an inducer of autophagy, Beclin1, a regulator of autophagy, and microtubule-associated protein 1 light chain 3 (LC3), which executes autophagy, in the development of osteoarthritis (OA) and in cartilage cell death. Expression of ULK1, Beclin1, and LC3 was analyzed in normal and OA human articular cartilage and in knee joints of mice with aging-related and surgically induced OA, using immunohistochemistry and Western blotting. Poly(ADP-ribose) polymerase (PARP) p85 expression was used to determine the correlation between cell death and autophagy. ULK1, Beclin1, and LC3 were constitutively expressed in normal human articular cartilage. ULK1, Beclin1, and LC3 protein expression was reduced in OA chondrocytes and cartilage, but these 3 proteins were strongly expressed in the OA cell clusters. In mouse knee joints, loss of glycosaminoglycans (GAGs) was observed at ages 9 months and 12 months and in the surgical OA model, 8 weeks after knee destabilization. Expression of ULK1, Beclin1, and LC3 decreased together with GAG loss, while PARP p85 expression was increased. Autophagy may be a protective or homeostatic mechanism in normal cartilage. In contrast, human OA and aging-related and surgically induced OA in mice are associated with a reduction and loss of ULK1, Beclin1, and LC3 expression and a related increase in apoptosis. These results suggest that compromised autophagy represents a novel mechanism in the development of OA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic syndrome meets osteoarthritis.

            Metabolic osteoarthritis (OA) has now been characterized as a subtype of OA, and links have been discovered between this phenotype and metabolic syndrome (MetS)--both with individual MetS components and with MetS as a whole. Hypertension associates with OA through subchondral ischaemia, which can compromise nutrient exchange into articular cartilage and trigger bone remodelling. Ectopic lipid deposition in chondrocytes induced by dyslipidemia might initiate OA development, exacerbated by deregulated cellular lipid metabolism in joint tissues. Hyperglycaemia and OA interact at both local and systemic levels; local effects of oxidative stress and advanced glycation end-products are implicated in cartilage damage, whereas low-grade systemic inflammation results from glucose accumulation and contributes to a toxic internal environment that can exacerbate OA. Obesity-related metabolic factors, particularly altered levels of adipokines, contribute to OA development by inducing the expression of proinflammatory factors as well as degradative enzymes, leading to the inhibition of cartilage matrix synthesis and stimulation of subchondral bone remodelling. In this Review, we summarize the shared mechanisms of inflammation, oxidative stress, common metabolites and endothelial dysfunction that characterize the aetiologies of OA and MetS, and nominate metabolic OA as the fifth component of MetS. We also describe therapeutic opportunities that might arise from uniting these concepts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy activation by rapamycin reduces severity of experimental osteoarthritis.

              Osteoarthritis is associated with cell death and extracellular matrix degradation in articular cartilage. Autophagy is an essential cellular homeostasis mechanism that was found to be deficient in ageing and osteoarthritic cartilage. This study determined whether pharmacological inhibition of the mammalian target of rapamycin (mTOR), a key inhibitor of autophagy, has disease-modifying activity in experimental osteoarthritis. Experimental osteoarthritis was induced by transection of the medial meniscotibial ligament and the medial collateral ligament in 2-month-old C57Bl/6 mice (n=36). Rapamycin (1 mg/kg weight/day) (n=18 mice) or dimethyl sulphoxide vehicle control (n=18 mice) was administered intraperitoneally for 10 weeks. Histopathological changes in articular cartilage and synovium were examined by using semiquantitative scoring systems. Rapamycin effects on mTOR signalling, autophagy, cartilage homeostasis and inflammation were analysed by immunohistochemistry and immunofluorescence staining. Rapamycin affected the mTOR signalling pathway in mouse knee joints as indicated by the inhibition of ribosomal protein S6 phosphorylation, a target of mTOR and activation of LC3, a main marker of autophagy. The severity of cartilage degradation was significantly (p<0.01) reduced in the rapamycin-treated group compared with the control group and this was associated with a significant (p<0.05) decrease in synovitis. Rapamycin treatment also maintained cartilage cellularity and decreased ADAMTS-5 and interleukin-1β expression in articular cartilage. These results suggest that rapamycin, at least in part by autophagy activation, reduces the severity of experimental osteoarthritis. Pharmacological activation of autophagy may be an effective therapeutic approach for osteoarthritis.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                October 2013
                16 October 2013
                : 14
                : 10
                : 20793-20808
                Affiliations
                [1 ]Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: rlargo@ 123456fjd.es (R.L.); gherrero@ 123456fjd.es (G.H.-B.)
                [2 ]Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; E-Mail: rodolfo.gomez@ 123456newcastle.ac.uk
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: amanda.villalvilla@ 123456fjd.es ; Tel.: +34-915-504-800; Fax: +34-915-442-636.
                Article
                ijms-14-20793
                10.3390/ijms141020793
                3821643
                24135873
                0758d5d4-9e87-43a9-a426-8839215b4b14
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 23 August 2013
                : 08 October 2013
                : 08 October 2013
                Categories
                Review

                Molecular biology
                chondrocyte,cartilage,osteoarthritis,lipid,cholesterol,nutrition
                Molecular biology
                chondrocyte, cartilage, osteoarthritis, lipid, cholesterol, nutrition

                Comments

                Comment on this article