38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subarachnoid hemorrhage secondary to a ruptured middle cerebral aneurysm in a patient with osteogenesis imperfecta: a case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders that occur owing to the abnormalities in type 1 collagen, and is characterized by increased bone fragility and other extraskeletal manifestations. We report the case of a patient who was diagnosed with OI following subarachnoid hemorrhage (SAH) secondary to a ruptured saccular intracranial aneurysm (IA).

          Case Presentation

          A 37-year-old woman was referred to our hospital because of sudden headache and vomiting. She was diagnosed with SAH (World Federation of Neurosurgical Society grade 2) owing to an aneurysm of the middle cerebral artery. She then underwent surgical clipping of the aneurysm successfully. She had blue sclerae, a history of several fractures of the extremities, and a family history of bone fragility and blue sclerae in her son. According to these findings, she was diagnosed with OI type 1. We performed genetic analysis for a single nucleotide G/C polymorphism (SNP) of exon 28 of the gene encoding for alpha-2 polypeptide of collagen 1, which is a potential risk factor for IA. However, this SNP was not detected in this patient or in five normal control subjects. Other genetic analyses did not reveal any mutations of the COL1A1 or COL1A2 gene. The cerebrovascular system is less frequently involved in OI. OI is associated with increased vascular weakness owing to collagen deficiency in and around the blood vessels. SAH secondary to a ruptured IA with OI has been reported in only six cases.

          Conclusion

          The patient followed a good clinical course after surgery. It remains controversial whether IAs are caused by OI or IAs are coincidentally complicated with OI.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic heterogeneity in osteogenesis imperfecta.

          An epidemiological and genetical study of osteogenesis imperfecta (OI) in Victoria, Australia confirmed that there are at least four distinct syndromes at present called OI. The largest group of patients showed autosomal dominant inheritance of osteoporosis leading to fractures and distinctly blue sclerae. A large proportion of adults had presenile deafness or a family history of presenile conductive hearing loss. A second group, who comprised the majority of newborns with neonatal fractures, all died before or soon after birth. These had characteristic broad, crumpled femora and beaded ribs in skeletal x-rays. Autosomal recessive inheritance was likely for some, if not all, of these cases. A third group, two thirds of whom had fractures at birth, showed severe progressive deformity of limbs and spine. The density of scleral blueness appeared less than that seen in the first group of patients and approximated that seen in normal children and adults. Moreover, the blueness appeared to decrease with age. All patients in this group were sporadic cases. The mode of inheritance was not resolved by the study, but it is likely that the group is heterogeneous with both dominant and recessive genotypes responsible for the syndrome. The fourth group of patients showed dominant inheritance of osteoporosis leading to fractures, with variable deformity of long bones, but normal sclerae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Collagens: molecular biology, diseases, and potentials for therapy.

            The collagen superfamily of proteins now contains at least 19 proteins formally defined as collagens and an additional ten proteins that have collagen-like domains. The most abundant collagens form extracellular fibrils or network-like structures, but the others fulfill a variety of biological functions. Some of the eight highly specific post-translational enzymes involved in collagen biosynthesis have recently been cloned. Over 400 mutations in 6 different collagens cause a variety of human diseases that include osteogenesis imperfecta, chondrodysplasias, some forms of osteoporosis, some forms of osteoarthritis, and the renal disease known as the Alport syndrome. Many of the disease phenotypes have been produced in transgenic mice with mutated collagen genes. There has been increasing interest in the possibility that the unique post-translational enzymes involved in collagen biosynthesis offer attractive targets for specifically inhibiting excessive fibrotic reactions in a number of diseases. A number of experiments suggest it may be possible to inhibit collagen synthesis with oligo-nucleotides or antisense genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human type I collagen mutation database.

              Type I collagen is the most abundant and ubiquitously distributed of the collagen family of proteins. It is a heterotrimer comprising two alpha1(I) chains and one alpha2(I) chain which are encoded by the unlinked loci COL1A1 and COL1A2 respectively. Mutations at these loci result primarily in the connective tissue disorders osteogenesis imperfecta and Ehlers-Danlos syndrome types VIIA and VIIB. Two instances of osteoporosis and a single instance of Marfan syndrome are also the result of mutations at these loci. The mutation data are accessible on the world wide web at http://www.le.ac.uk/depts/ge/collagen/collagen.html
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Neurol
                BMC Neurol
                BMC Neurology
                BioMed Central
                1471-2377
                2014
                23 July 2014
                : 14
                : 150
                Affiliations
                [1 ]Department of Neurosurgery, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara City, Chiba 299-0111, Japan
                [2 ]Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
                [3 ]Teikyo Heisei University, 2-51-4 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-8445, Japan
                Article
                1471-2377-14-150
                10.1186/1471-2377-14-150
                4131488
                25056440
                07686d7e-da34-4b86-82fd-4ed1307bea26
                Copyright © 2014 Hirohata et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 January 2014
                : 30 June 2014
                Categories
                Case Report

                Neurology
                osteogenesis imperfecta,subarachnoid hemorrhage,intracranial aneurysm,type 1 collagen

                Comments

                Comment on this article