Blog
About

38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Genetically encoding N(epsilon)-acetyllysine in recombinant proteins.

          N(epsilon)-acetylation of lysine (1) is a reversible post-translational modification with a regulatory role that rivals that of phosphorylation in eukaryotes. No general methods exist to synthesize proteins containing N(epsilon)-acetyllysine (2) at defined sites. Here we demonstrate the site-specific incorporation of N(epsilon)-acetyllysine in recombinant proteins produced in Escherichia coli via the evolution of an orthogonal N(epsilon)-acetyllysyl-tRNA synthetase/tRNA(CUA) pair. This strategy should find wide applications in defining the cellular role of this modification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA.

            Pyrrolysine is a lysine derivative encoded by the UAG codon in methylamine methyltransferase genes of Methanosarcina barkeri. Near a methyltransferase gene cluster is the pylT gene, which encodes an unusual transfer RNA (tRNA) with a CUA anticodon. The adjacent pylS gene encodes a class II aminoacyl-tRNA synthetase that charges the pylT-derived tRNA with lysine but is not closely related to known lysyl-tRNA synthetases. Homologs of pylS and pylT are found in a Gram-positive bacterium. Charging a tRNA(CUA) with lysine is a likely first step in translating UAG amber codons as pyrrolysine in certain methanogens. Our results indicate that pyrrolysine is the 22nd genetically encoded natural amino acid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion.

              In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1-mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from approximately 20% to >60% on a single amber codon and from 20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                March 2010
                February 14 2010
                March 2010
                : 464
                : 7287
                : 441-444
                Article
                10.1038/nature08817
                20154731
                © 2010

                Comments

                Comment on this article