1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First successful hybridization experiment between native European weatherfish (Misgurnus fossilis) and non-native Oriental weatherfish (M. anguillicaudatus) reveals no evidence for postzygotic barriers

      , , , , ,

      NeoBiota

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The European weatherfish Misgurnus fossilis (Linnaeus, 1758) is a threatened freshwater species in large parts of Europe and might come under pressure from currently establishing exotic weatherfish species. Additional threats might arise if those species hybridize which has been questioned in previous research. Regarding the hybridization of M. fossilis × M. anguillicaudatus (Cantor, 1842), we demonstrate that despite the considerable genetic distance between parental species, the estimated long divergence time and different ploidy levels do not represent a postzygotic barrier for hybridization of the European and Oriental weatherfish. The paternal species can be easily differentiated based on external pigment patterns with hybrids showing intermediate patterns. No difference in standard metabolic rate, indicating a lack of hybrid vigour, renders predictions of potential threats to the European weatherfish from hybridization with the Oriental weatherfish difficult. Therefore, the genetic and physiological basis of invasiveness via hybridization remains elusive in Misgurnus species and requires further research. The existence of prezygotic reproductive isolation mechanisms and the fertility of F1 hybrids remains to be tested to predict the potential threats of globally invasive Oriental weatherfish species.

          Related collections

          Most cited references 68

          • Record: found
          • Abstract: not found
          • Article: not found

          Invasive species are a leading cause of animal extinctions.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactive effects of habitat modification and species invasion on native species decline.

            Different components of global environmental change are often studied and managed independently, but mounting evidence points towards complex non-additive interaction effects between drivers of native species decline. Using the example of interactions between land-use change and biotic exchange, we develop an interpretive framework that will enable global change researchers to identify and discriminate between major interaction pathways. We formalise a distinction between numerically mediated versus functionally moderated causal pathways. Despite superficial similarity of their effects, numerical and functional pathways stem from fundamentally different mechanisms of action and have fundamentally different consequences for conservation management. Our framework is a first step toward building a better quantitative understanding of how interactions between drivers might mitigate or exacerbate the net effects of global environmental change on biotic communities in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species

              We developed a set of universal PCR primers (MiFish-U/E) for metabarcoding environmental DNA (eDNA) from fishes. Primers were designed using aligned whole mitochondrial genome (mitogenome) sequences from 880 species, supplemented by partial mitogenome sequences from 160 elasmobranchs (sharks and rays). The primers target a hypervariable region of the 12S rRNA gene (163–185 bp), which contains sufficient information to identify fishes to taxonomic family, genus and species except for some closely related congeners. To test versatility of the primers across a diverse range of fishes, we sampled eDNA from four tanks in the Okinawa Churaumi Aquarium with known species compositions, prepared dual-indexed libraries and performed paired-end sequencing of the region using high-throughput next-generation sequencing technologies. Out of the 180 marine fish species contained in the four tanks with reference sequences in a custom database, we detected 168 species (93.3%) distributed across 59 families and 123 genera. These fishes are not only taxonomically diverse, ranging from sharks and rays to higher teleosts, but are also greatly varied in their ecology, including both pelagic and benthic species living in shallow coastal to deep waters. We also sampled natural seawaters around coral reefs near the aquarium and detected 93 fish species using this approach. Of the 93 species, 64 were not detected in the four aquarium tanks, rendering the total number of species detected to 232 (from 70 families and 152 genera). The metabarcoding approach presented here is non-invasive, more efficient, more cost-effective and more sensitive than the traditional survey methods. It has the potential to serve as an alternative (or complementary) tool for biodiversity monitoring that revolutionizes natural resource management and ecological studies of fish communities on larger spatial and temporal scales.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                October 07 2021
                October 07 2021
                : 69
                : 29-50
                Article
                10.3897/neobiota.69.67708
                © 2021

                Comments

                Comment on this article