73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fasiglifam (TAK-875) Inhibits Hepatobiliary Transporters: A Possible Factor Contributing to Fasiglifam-Induced Liver Injury.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fasiglifam (TAK-875), a selective G-protein-coupled receptor 40 agonist, was developed for the treatment of type 2 diabetes mellitus; however, its development was terminated in phase III clinical trials because of liver safety concerns. Our preliminary study indicated that intravenous administration of 100 mg/kg of TAK-875 increased the serum total bile acid concentration by 3 to 4 times and total bilirubin levels by 1.5 to 2.6 times in rats. In the present study, we examined the inhibitory effects of TAK-875 on hepatobiliary transporters to explore the mechanisms underlying its hepatotoxicity. TAK-875 decreased the biliary excretion index and the in vitro biliary clearance of d₈-taurocholic acid in sandwich-cultured rat hepatocytes, suggesting that TAK-875 impaired biliary excretion of bile acids, possibly by inhibiting bile salt export pump (Bsep). TAK-875 inhibited the efflux transporter multidrug resistance-associated protein 2 (Mrp2) in rat hepatocytes using 5 (and 6)-carboxy-2',7'-dichlorofluorescein as a substrate. Inhibition of MRP2 was further confirmed by reduced transport of vinblastine in Madin-Darby canine kidney cells overexpressing MRP2 with IC₅₀ values of 2.41 μM. TAK-875 also inhibited the major bile acid uptake transporter Na(+)/taurocholate cotransporting polypeptide (Ntcp), which transports d₈-taurocholic acid into rat hepatocytes, with an IC₅₀ value of 10.9 μM. TAK-875 significantly inhibited atorvastatin uptake in organic anion transporter protein (OATP) 1B1 and OATP1B3 cells with IC₅₀ values of 2.28 and 3.98 μM, respectively. These results indicate that TAK-875 inhibited the efflux transporter MRP2/Mrp2 and uptake transporters Ntcp and OATP/Oatp, which may affect bile acid and bilirubin homeostasis, resulting in hyperbilirubinemia and cholestatic hepatotoxicity.

          Related collections

          Author and article information

          Journal
          Drug Metab. Dispos.
          Drug metabolism and disposition: the biological fate of chemicals
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          1521-009X
          0090-9556
          Nov 2015
          : 43
          : 11
          Affiliations
          [1 ] Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
          [2 ] Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China xychen@simm.ac.cn.
          Article
          dmd.115.064121
          10.1124/dmd.115.064121
          26276582
          077e1a0c-badf-4026-acc8-ae7500df236e
          History

          Comments

          Comment on this article

          Related Documents Log