30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New method for retrospective study of hemodynamic changes before and after aneurysm formation in patients with ruptured or unruptured aneurysms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prospective observation of hemodynamic changes before and after formation of brain aneurysms is often difficult. We used a vessel surface repair method to carry out a retrospective hemodynamic study before and after aneurysm formation in a ruptured aneurysm of the posterior communicating artery (RPcomAA) and an unruptured aneurysm of the posterior communicating artery (URPcomAA).

          Methods

          Arterial geometries obtained from three-dimensional digital subtraction angiography of cerebral angiograms were used for flow simulation by employing finite-volume modeling. Hemodynamic parameters such as wall shear stress (WSS), blood-flow velocity, streamlines, pressure, and wall shear stress gradient (WSSG) in the aneurysm sac and at the site of aneurysm formation were analyzed in each model.

          Results

          At “aneurysm” status, hemodynamic analyses at the neck, body, and dome of the aneurysm revealed the distal aneurysm neck to be subjected to the highest WSS and blood-flow velocity, whereas the aneurysm dome presented the lowest WSS and blood-flow velocity in both model types. More apparent changes in WSSG at the aneurysm dome with an inflow jet and narrowed impaction zone were revealed only in the RPcomAA. At “pre-aneurysm” status, hemodynamic analyses in both models showed that the region of aneurysm formation was subjected to extremely elevated WSS, WSSG, and blood-flow velocity.

          Conclusions

          These data suggest that hemodynamic analyses in patients with ruptured or unruptured aneurysms using the vessel surface repair method are feasible, economical, and simple. Our preliminary results indicated that the arterial wall was subjected to elevated WSS, WSSG and blood-flow velocity before aneurysm generation. However, more complicated flow patterns (often with an inflow jet or narrowed impaction zone) were more likely to be observed in ruptured aneurysm.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases.

          The cellular mechanisms of degeneration and repair preceding rupture of the saccular cerebral artery aneurysm wall need to be elucidated for rational design of growth factor or drug-releasing endovascular devices. Patient records, preoperative vascular imaging studies, and the snap-frozen fundi resected after microsurgical clipping from 66 aneurysms were studied. Immunostainings for markers of smooth muscle cell (SMC) phenotype, proliferation, and inflammatory cell subtypes and TUNEL reaction were performed. Unruptured (24) and ruptured (42) aneurysms had similar dimensions (median diameter in unruptured 6 mm; median in ruptured 7 mm; P=0.308). We identified 4 basic types of aneurysm wall that associated with rupture: (1) endothelialized wall with linearly organized SMCs (17/66; 42% ruptured), (2) thickened wall with disorganized SMCs (20/66; 55% ruptured), (3) hypocellular wall with either myointimal hyperplasia or organizing luminal thrombosis (14/66; 64% ruptured), and (4) an extremely thin thrombosis-lined hypocellular wall (15/66; 100% ruptured). Apoptosis, de-endothelialization, luminal thrombosis, SMC proliferation, and T-cell and macrophage infiltration associated with rupture. Furthermore, macrophage infiltration associated with SMC proliferation, and both were increased in ruptured aneurysms resected <12 hours from rupture, suggesting that these were not just reactive changes. Before rupture, the wall of saccular cerebral artery aneurysm undergoes morphological changes associated with remodeling of the aneurysm wall. Some of these changes, like SMC proliferation and macrophage infiltration, likely reflect ongoing repair attempts that could be enhanced with pharmacological therapy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms.

              Wall shear stress (WSS) is one of the main pathogenic factors in the development of saccular cerebral aneurysms. The magnitude and distribution of the WSS in and around human middle cerebral artery (MCA) aneurysms were analyzed using the method of computed fluid dynamics (CFD). Twenty mathematical models of MCA vessels with aneurysms were created by 3-dimensional computed tomographic angiography. CFD calculations were performed by using our original finite-element solver with the assumption of Newtonian fluid property for blood and the rigid wall property for the vessel and the aneurysm. The maximum WSS in the calculated region tended to occur near the neck of the aneurysm, not in its tip or bleb. The magnitude of the maximum WSS was 14.39+/-6.21 N/m2, which was 4-times higher than the average WSS in the vessel region (3.64+/-1.25 N/m2). The average WSS of the aneurysm region (1.64+/-1.16 N/m2) was significantly lower than that of the vessel region (P<0.05). The WSSs at the tip of ruptured aneurysms were markedly low. These results suggest that in contrast to the pathogenic effect of a high WSS in the initiating phase, a low WSS may facilitate the growing phase and may trigger the rupture of a cerebral aneurysm by causing degenerative changes in the aneurysm wall. The WSS of the aneurysm region may be of some help for the prediction of rupture.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Neurol
                BMC Neurol
                BMC Neurology
                BioMed Central
                1471-2377
                2013
                6 November 2013
                : 13
                : 166
                Affiliations
                [1 ]Department of Radiology, The Sixth Affiliated People’s Hospital, Medical School of Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China
                Article
                1471-2377-13-166
                10.1186/1471-2377-13-166
                4228259
                24195732
                0794695e-5c55-4c88-be1f-cc73ee17ccef
                Copyright © 2013 Le et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 April 2013
                : 28 October 2013
                Categories
                Research Article

                Neurology
                cerebral aneurysm,hemodynamics,wall shear stress
                Neurology
                cerebral aneurysm, hemodynamics, wall shear stress

                Comments

                Comment on this article