11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria

      , , , ,
      International Journal of Food Sciences and Nutrition
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age.

          Oligosaccharides may alter postnatal immune development by influencing the constitution of gastrointestinal bacterial flora. To investigate the effect of a prebiotic mixture of galacto- and long chain fructo-oligosaccharides on the incidence of atopic dermatitis (AD) during the first six months of life in formula fed infants at high risk of atopy. Prospective, double-blind, randomised, placebo controlled trial; 259 infants at risk for atopy were enrolled. A total of 102 infants in the prebiotic group and 104 infants in the placebo group completed the study. If bottle feeding was started, the infant was randomly assigned to one of two hydrolysed protein formula groups (0.8 g/100 ml prebiotics or maltodextrine as placebo). All infants were examined for clinical evidence of atopic dermatitis. In a subgroup of 98 infants, faecal flora was analysed. Ten infants (9.8%; 95 CI 5.4-17.1%) in the intervention group and 24 infants (23.1%; 95 CI 16.0-32.1%) in the control group developed AD. The severity of the dermatitis was not affected by diet. Prebiotic supplements were associated with a significantly higher number of faecal bifidobacteria compared with controls but there was no significant difference in lactobacilli counts. Results show for the first time a beneficial effect of prebiotics on the development of atopic dermatitis in a high risk population of infants. Although the mechanism of this effect requires further investigation, it appears likely that oligosaccharides modulate postnatal immune development by altering bowel flora and have a potential role in primary allergy prevention during infancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FAO Technical meeting on prebiotics.

            Recognizing the possible beneficial effect of prebiotics in food, the Food and Agriculture Organization of the United Nations (FAO) convened a Technical meeting to start work on the evaluation of the functional and health properties of prebiotics. A group of international experts agreed on guidelines, recommended criteria, and methodology for conducting a systematic approach for the evaluation of prebiotics leading to its safe use in food. It was recommended that a full expert consultation be convened under the auspices of FAO. This work provides governments, industry, and consumers with scientific advice in relation to functional and health aspects of prebiotics and general guidance for the assessment of prebiotics in relation to their nutritional properties or safety. These guidelines may also be used by Member Countries and Codex Alimentarius to identify and define what data need to be available to accurately substantiate health and nutrition claims.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells.

              Prebiotic oligosaccharides are thought to provide beneficial effects in the gastrointestinal tract of humans and animals by stimulating growth of selected members of the intestinal microflora. Another means by which prebiotic oligosaccharides may confer health benefits is via their antiadhesive activity. Specifically, these oligosaccharides may directly inhibit infections by enteric pathogens due to their ability to act as structural mimics of the pathogen binding sites that coat the surface of gastrointestinal epithelial cells. In this study, the ability of commercial prebiotics to inhibit attachment of microcolony-forming enteropathogenic Escherichia coli (EPEC) was investigated. The adherence of EPEC strain E2348/69 on HEp-2 and Caco-2 cells, in the presence of fructooligosaccharides, inulin, galactooligosaccharides (GOS), lactulose, and raffinose was determined by cultural enumeration and microscopy. Purified GOS exhibited the greatest adherence inhibition on both HEp-2 and Caco-2 cells, reducing the adherence of EPEC by 65 and 70%, respectively. In addition, the average number of bacteria per microcolony was significantly reduced from 14 to 4 when GOS was present. Adherence inhibition by GOS was dose dependent, reaching a maximum at 16 mg/ml. When GOS was added to adhered EPEC cells, no displacement was observed. The expression of BfpA, a bundle-forming-pilus protein involved in localized adherence, was not affected by GOS, indicating that adherence inhibition was not due to the absence of this adherence factor. In addition, GOS did not affect autoaggregation. These observations suggest that some prebiotic oligosaccharides may have antiadhesive activity and directly inhibit the adherence of pathogens to the host epithelial cell surface.
                Bookmark

                Author and article information

                Journal
                International Journal of Food Sciences and Nutrition
                International Journal of Food Sciences and Nutrition
                Informa UK Limited
                0963-7486
                1465-3478
                February 05 2016
                February 17 2016
                February 17 2016
                February 17 2016
                : 67
                : 2
                : 125-132
                Article
                10.3109/09637486.2016.1147019
                26888650
                079c059d-1efb-4224-aa33-d6fe6190758a
                © 2016
                History

                Comments

                Comment on this article