25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective measures against ultrafiltration failure in peritoneal dialysis patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrafiltration failure in patients undergoing peritoneal dialysis is a condition with an incidence that increases over time. It is related to increased cardiovascular morbidity and mortality and is a major cause of the abandonment of the treatment technique. Because the number of patients undergoing renal replacement therapy is increasing with society aging and because approximately 10% of this population is treated with peritoneal dialysis, this matter is becoming more common in everyday practice for clinicians involved in the care of patients with chronic renal failure. In this review, we summarize the available measures used to prevent and treat ultrafiltration failure and the current state of research in the field, both in the experimental and clinical settings, focusing on the possible clinical applications of recent findings.

          Related collections

          Most cited references327

          • Record: found
          • Abstract: found
          • Article: not found

          Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.

          The phenomenon of inhibition of tumor growth by tumor mass has been repeatedly studied, but without elucidation of a satisfactory mechanism. In our animal model, a primary tumor inhibits its remote metastases. After tumor removal, metastases neovascularize and grow. When the primary tumor is present, metastatic growth is suppressed by a circulating angiogenesis inhibitor. Serum and urine from tumor-bearing mice, but not from controls, specifically inhibit endothelial cell proliferation. The activity copurifies with a 38 kDa plasminogen fragment that we have sequenced and named angiostatin. A corresponding fragment of human plasminogen has similar activity. Systemic administration of angiostatin, but not intact plasminogen, potently blocks neovascularization and growth of metastases. We here show that the inhibition of metastases by a primary mouse tumor is mediated, at least in part, by angiostatin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.

            Diabetic hyperglycaemia causes a variety of pathological changes in small vessels, arteries and peripheral nerves. Vascular endothelial cells are an important target of hyperglycaemic damage, but the mechanisms underlying this damage are not fully understood. Three seemingly independent biochemical pathways are involved in the pathogenesis: glucose-induced activation of protein kinase C isoforms; increased formation of glucose-derived advanced glycation end-products; and increased glucose flux through the aldose reductase pathway. The relevance of each of these pathways is supported by animal studies in which pathway-specific inhibitors prevent various hyperglycaemia-induced abnormalities. Hyperglycaemia increases the production of reactive oxygen species inside cultured bovine aortic endothelial cells. Here we show that this increase in reactive oxygen species is prevented by an inhibitor of electron transport chain complex II, by an uncoupler of oxidative phosphorylation, by uncoupling protein-1 and by manganese superoxide dismutase. Normalizing levels of mitochondrial reactive oxygen species with each of these agents prevents glucose-induced activation of protein kinase C, formation of advanced glycation end-products, sorbitol accumulation and NFkappaB activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy.

              Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in vivo. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high affinity VEGF receptors. VEGF plays an essential role in developmental angiogenesis and is important also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with VEGF inhibitors in a variety of malignancies are ongoing. Recently, a humanized anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the FDA as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
                Bookmark

                Author and article information

                Journal
                Clinics (Sao Paulo)
                Clinics
                Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo
                1807-5932
                1980-5322
                December 2011
                : 66
                : 12
                : 2151-2157
                Affiliations
                Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Nephrology Division, São Paulo/SP, Brazil.
                Author notes

                Aguirre AR was responsible for searching the literature for relevant data, and manuscript writing. Abensur H was responsible for searching the literature for relevant data, manuscript draft, and manuscript revision.

                E-mail: annaritanefro@ 123456gmail.com Tel.: 55 11 2661-7629
                Article
                cln_66p2151
                10.1590/S1807-59322011001200023
                3226613
                22189743
                079e5dfa-da3d-4ab4-8346-07ebffe35b64
                Copyright © 2011 Hospital das Clínicas da FMUSP

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 June 2011
                : 6 August 2011
                : 18 August 2011
                Page count
                Pages: 7
                Categories
                Review

                Medicine
                ultrafiltration,peritoneal dialysis fluids,end-stage renal disease,peritoneal membrane,peritoneal fibrosis

                Comments

                Comment on this article