36
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anaemia and blood transfusion in African children presenting to hospital with severe febrile illness

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Severe anaemia in children is a leading cause of hospital admission and a major cause of mortality in sub-Saharan Africa, yet there are limited published data on blood transfusion in this vulnerable group.

          Methods

          We present data from a large controlled trial of fluid resuscitation (Fluid Expansion As Supportive Therapy (FEAST) trial) on the prevalence, clinical features, and transfusion management of anaemia in children presenting to hospitals in three East African countries with serious febrile illness (predominantly malaria and/or sepsis) and impaired peripheral perfusion.

          Results

          Of 3,170 children in the FEAST trial, 3,082 (97%) had baseline haemoglobin (Hb) measurement, 2,346/3,082 (76%) were anaemic (Hb <10 g/dL), and 33% severely anaemic (Hb <5 g/dL). Prevalence of severe anaemia varied from 12% in Kenya to 41% in eastern Uganda. 1,387/3,082 (45%) children were transfused (81% within 8 hours). Adherence to WHO transfusion guidelines was poor. Among severely anaemic children who were not transfused, 52% (54/103) died within 8 hours, and 90% of these deaths occurred within 2.5 hours of randomisation. By 24 hours, 128/1,002 (13%) severely anaemic children had died, compared to 36/501 (7%) and 71/843 (8%) of those with moderate and mild anaemia, respectively. Among children without severe hypotension who were randomised to receive fluid boluses of 0.9% saline or albumin, mortality was increased (10.6% and 10.5%, respectively) compared to controls (7.2%), regardless of admission Hb level. Repeat transfusion varied from ≤2% in Kenya/Tanzania to 6 to 13% at the four Ugandan centres. Adverse reactions to blood were rare (0.4%).

          Conclusions

          Severe anaemia complicates one third of childhood admissions with serious febrile illness to hospitals in East Africa, and is associated with increased mortality. A high proportion of deaths occurred within 2.5 hours of admission, emphasizing the need for rapid recognition and prompt blood transfusion. Adherence to current WHO transfusion guidelines was poor. The high rates of re-transfusion suggest that 20 mL/kg whole blood or 10 mL/kg packed cells may undertreat a significant proportion of anaemic children. Future evaluation of the impact of a larger volume of transfused blood and optimum transfusion management of children with Hb of <6 g/dL is warranted.

          Please see related article: http://dx.doi.org/10.1186/s12916-014-0248-5.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12916-014-0246-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A systematic analysis of global anemia burden from 1990 to 2010.

          Previous studies of anemia epidemiology have been geographically limited with little detail about severity or etiology. Using publicly available data, we estimated mild, moderate, and severe anemia from 1990 to 2010 for 187 countries, both sexes, and 20 age groups. We then performed cause-specific attribution to 17 conditions using data from the Global Burden of Diseases, Injuries and Risk Factors (GBD) 2010 Study. Global anemia prevalence in 2010 was 32.9%, causing 68.36 (95% uncertainty interval [UI], 40.98 to 107.54) million years lived with disability (8.8% of total for all conditions [95% UI, 6.3% to 11.7%]). Prevalence dropped for both sexes from 1990 to 2010, although more for males. Prevalence in females was higher in most regions and age groups. South Asia and Central, West, and East sub-Saharan Africa had the highest burden, while East, Southeast, and South Asia saw the greatest reductions. Iron-deficiency anemia was the top cause globally, although 10 different conditions were among the top 3 in regional rankings. Malaria, schistosomiasis, and chronic kidney disease-related anemia were the only conditions to increase in prevalence. Hemoglobinopathies made significant contributions in most populations. Burden was highest in children under age 5, the only age groups with negative trends from 1990 to 2010.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A new world malaria map: Plasmodium falciparum endemicity in 2010

            Background Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Methods Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfR c of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at 2015.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mortality after fluid bolus in African children with severe infection.

              The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established. We randomly assigned children with severe febrile illness and impaired perfusion to receive boluses of 20 to 40 ml of 5% albumin solution (albumin-bolus group) or 0.9% saline solution (saline-bolus group) per kilogram of body weight or no bolus (control group) at the time of admission to a hospital in Uganda, Kenya, or Tanzania (stratum A); children with severe hypotension were randomly assigned to one of the bolus groups only (stratum B). All children received appropriate antimicrobial treatment, intravenous maintenance fluids, and supportive care, according to guidelines. Children with malnutrition or gastroenteritis were excluded. The primary end point was 48-hour mortality; secondary end points included pulmonary edema, increased intracranial pressure, and mortality or neurologic sequelae at 4 weeks. The data and safety monitoring committee recommended halting recruitment after 3141 of the projected 3600 children in stratum A were enrolled. Malaria status (57% overall) and clinical severity were similar across groups. The 48-hour mortality was 10.6% (111 of 1050 children), 10.5% (110 of 1047 children), and 7.3% (76 of 1044 children) in the albumin-bolus, saline-bolus, and control groups, respectively (relative risk for saline bolus vs. control, 1.44; 95% confidence interval [CI], 1.09 to 1.90; P=0.01; relative risk for albumin bolus vs. saline bolus, 1.01; 95% CI, 0.78 to 1.29; P=0.96; and relative risk for any bolus vs. control, 1.45; 95% CI, 1.13 to 1.86; P=0.003). The 4-week mortality was 12.2%, 12.0%, and 8.7% in the three groups, respectively (P=0.004 for the comparison of bolus with control). Neurologic sequelae occurred in 2.2%, 1.9%, and 2.0% of the children in the respective groups (P=0.92), and pulmonary edema or increased intracranial pressure occurred in 2.6%, 2.2%, and 1.7% (P=0.17), respectively. In stratum B, 69% of the children (9 of 13) in the albumin-bolus group and 56% (9 of 16) in the saline-bolus group died (P=0.45). The results were consistent across centers and across subgroups according to the severity of shock and status with respect to malaria, coma, sepsis, acidosis, and severe anemia. Fluid boluses significantly increased 48-hour mortality in critically ill children with impaired perfusion in these resource-limited settings in Africa. (Funded by the Medical Research Council, United Kingdom; FEAST Current Controlled Trials number, ISRCTN69856593.).
                Bookmark

                Author and article information

                Contributors
                skwalube@yahoo.co.uk
                k.maitland@imperial.ac.uk
                elizabeth.george@ucl.ac.uk
                polupotolupot@yahoo.com
                opokabob@yahoo.com
                charlesengoru@yahoo.co.uk
                sakech@gmail.com
                richard_nyeko@yahoo.com
                mtoveg2002@yahoo.co.uk
                hugh.reyburn@lshtm.ac.uk
                m.levin@imperial.ac.uk
                a.babiker@ucl.ac.uk
                diana.gibb@ucl.ac.uk
                jane.crawley@gmail.com
                Journal
                BMC Med
                BMC Med
                BMC Medicine
                BioMed Central (London )
                1741-7015
                2 February 2015
                2 February 2015
                2015
                : 13
                : 1
                : 21
                Affiliations
                [ ]Department of Paediatrics, Mulago Hospital, Makerere University, PO Box 7070, Kampala, Uganda
                [ ]Kilifi Clinical Trials Facility, KEMRI-Wellcome Trust Research Programme, PO Box 203, Nairobi, Kenya
                [ ]Wellcome Trust Centre for Clinical Tropical Medicine, and Department of Paediatrics, Faculty of Medicine, Imperial College, London, W2 1PG UK
                [ ]Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, Aviation House, 125 Kingsway, London, WC2B 6NH UK
                [ ]Department of Paediatrics, Mbale Regional Referral Hospital, Pallisa Road Zone, PO Box 921, Mbale, Uganda
                [ ]Department of Paediatrics, Soroti Regional Referral Hospital, PO Box 289, Soroti, Uganda
                [ ]Department of Paediatrics, St Mary’s Hospital, PO Box 180, Lacor, Uganda
                [ ]Department of Paediatrics, Joint Malaria Programme, Teule Hospital, PO Box 81, Muheza, Tanzania
                [ ]Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LD UK
                Article
                246
                10.1186/s12916-014-0246-7
                4313469
                25640706
                07a65e3f-61b1-41de-8336-6098c1b6d63b
                © Kiguli et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 16 September 2014
                : 8 December 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Medicine
                africa,anaemia,blood transfusion,children,feast trial,malaria,sepsis
                Medicine
                africa, anaemia, blood transfusion, children, feast trial, malaria, sepsis

                Comments

                Comment on this article