Blog
About

26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      We Are Ageing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ageing and longevity is unquestioningly complex. Several thoughts and mechanisms of ageing such as pathways involved in oxidative stress, lipid and glucose metabolism, inflammation, DNA damage and repair, growth hormone axis and insulin-like growth factor (GH/IGF), and environmental exposure have been proposed. Also, some theories of ageing were introduced. To date, the most promising leads for longevity are caloric restriction, particularly target of rapamycin (TOR), sirtuins, hexarelin and hormetic responses. This review is an attempt to analyze the mechanisms and theories of ageing and achieving longevity.

          Related collections

          Most cited references 159

          • Record: found
          • Abstract: found
          • Article: not found

          Resveratrol improves health and survival of mice on a high-calorie diet.

          Resveratrol (3,5,4'-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans.

            Ageing is a fundamental, unsolved mystery in biology. DAF-16, a FOXO-family transcription factor, influences the rate of ageing of Caenorhabditis elegans in response to insulin/insulin-like growth factor 1 (IGF-I) signalling. Using DNA microarray analysis, we have found that DAF-16 affects expression of a set of genes during early adulthood, the time at which this pathway is known to control ageing. Here we find that many of these genes influence the ageing process. The insulin/IGF-I pathway functions cell non-autonomously to regulate lifespan, and our findings suggest that it signals other cells, at least in part, by feedback regulation of an insulin/IGF-I homologue. Furthermore, our findings suggest that the insulin/IGF-I pathway ultimately exerts its effect on lifespan by upregulating a wide variety of genes, including cellular stress-response, antimicrobial and metabolic genes, and by downregulating specific life-shortening genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caloric restriction delays disease onset and mortality in rhesus monkeys.

              Caloric restriction (CR), without malnutrition, delays aging and extends life span in diverse species; however, its effect on resistance to illness and mortality in primates has not been clearly established. We report findings of a 20-year longitudinal adult-onset CR study in rhesus monkeys aimed at filling this critical gap in aging research. In a population of rhesus macaques maintained at the Wisconsin National Primate Research Center, moderate CR lowered the incidence of aging-related deaths. At the time point reported, 50% of control fed animals survived as compared with 80% of the CR animals. Furthermore, CR delayed the onset of age-associated pathologies. Specifically, CR reduced the incidence of diabetes, cancer, cardiovascular disease, and brain atrophy. These data demonstrate that CR slows aging in a primate species.
                Bookmark

                Author and article information

                Affiliations
                Cardiology Department, Onassis Cardiac Surgery Center, 356 Sygrou Avenue, 17674 Athens, Greece
                Author notes
                *Genovefa D. Kolovou: genovefa@ 123456kolovou.com

                Academic Editor: Elísio Costa

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                22 June 2014
                : 2014
                10.1155/2014/808307
                4090574
                Copyright © 2014 Genovefa D. Kolovou et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Comments

                Comment on this article