6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Transcriptome Analysis of Gonads for the Identification of Sex-Related Genes in Giant Freshwater Prawns ( Macrobrachium Rosenbergii) Using RNA Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The giant freshwater prawn ( Macrobrachium rosenbergii) exhibits sex dimorphism between the male and female individuals. To date, the molecular mechanism governing gonadal development was unclear, and limited data were available on the gonad transcriptome of M. rosenbergii. Here, we conducted comprehensive gonadal transcriptomic analysis of female (ZW), super female (WW), and male (ZZ) M. rosenbergii for gene discovery. A total of 70.33 gigabases (Gb) of sequences were generated. There were 115,338 unigenes assembled with a mean size of 1196 base pair (bp) and N50 of 2195 bp. Alignment against the National Center for Biotechnology Information (NCBI) non-redundant nucleotide/protein sequence database (NR and NT), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, SwissProt database, Protein family (Pfam), Gene ontology (GO), and the eukaryotic orthologous group (KOG) database, 36,282 unigenes were annotated at least in one database. Comparative transcriptome analysis observed that 10,641, 16,903, and 3393 genes were significantly differentially expressed in ZW vs. ZZ, WW vs. ZZ, and WW vs. ZW samples, respectively. Enrichment analysis of differentially expressed genes (DEGs) resulted in 268, 153, and 42 significantly enriched GO terms, respectively, and a total of 56 significantly enriched KEGG pathways. Additionally, 23 putative sex-related genes, including Gtsf1, IR, HSP21, MRPINK, Mrr, and other potentially promising candidate genes were identified. Moreover, 56,241 simple sequence repeats (SSRs) were identified. Our findings provide a valuable archive for further functional analyses of sex-related genes and future discoveries of underlying molecular mechanisms of gonadal development and sex determination.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.

          TGICL is a pipeline for analysis of large Expressed Sequence Tags (EST) and mRNA databases in which the sequences are first clustered based on pairwise sequence similarity, and then assembled by individual clusters (optionally with quality values) to produce longer, more complete consensus sequences. The system can run on multi-CPU architectures including SMP and PVM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.

            In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of supergene families associated with insecticide resistance.

              The emergence of insecticide resistance in the mosquito poses a serious threat to the efficacy of many malaria control programs. We have searched the Anopheles gambiae genome for members of the three major enzyme families- the carboxylesterases, glutathione transferases, and cytochrome P450s-that are primarily responsible for metabolic resistance to insecticides. A comparative genomic analysis with Drosophila melanogaster reveals that a considerable expansion of these supergene families has occurred in the mosquito. Low gene orthology and little chromosomal synteny paradoxically contrast the easily identified orthologous groups of genes presumably seeded by common ancestors. In A. gambiae, the independent expansion of paralogous genes is mainly a consequence of the formation of clusters among locally duplicated genes. These expansions may reflect the functional diversification of supergene families consistent with major differences in the life history and ecology of these organisms. These data provide a basis for identifying the resistance-associated enzymes within these families. This will enable the resistance status of mosquitoes, flies, and possibly other holometabolous insects to be monitored. The analyses also provide the means for identifying previously unknown molecules involved in fundamental biological processes such as development.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                11 December 2019
                December 2019
                : 10
                : 12
                : 1035
                Affiliations
                [1 ]College of Animal Science and Technology, Guangxi University, Nanning 530001, China; jiangjianping818@ 123456126.com (J.J.); cauyx2014@ 123456163.com (X.Y.); qiuscott@ 123456163.com (Q.Q.); jiangqinyang@ 123456126.com (Q.J.); fupenghui@ 123456sohu.com (P.F.); 456zhang16@ 123456sina.com (Y.Z.)
                [2 ]Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
                [3 ]Guangxi Academy of Fishery Sciences, Nanning 530021, China; gxnnhghua@ 123456sina.com
                [4 ]College of Animal Science, Southwest University, Chongqing 402460, China
                [5 ]Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China; yinhai18@ 123456163.com
                Author notes
                [* ]Correspondence: yangxiurong09@ 123456163.com (X.Y.); h_sjiang@ 123456126.com (H.J.)
                [†]

                These authors contributed equally to this work.

                Article
                genes-10-01035
                10.3390/genes10121035
                6947849
                31835875
                07addfed-c3c2-4544-990b-2c9e0167c538
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 November 2019
                : 02 December 2019
                Categories
                Article

                macrobrachium rosenbergii,rna-seq,gonad,sex-related candidate gene,ssr

                Comments

                Comment on this article