7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ictal and Post Ictal Impaired Consciousness due to Enhanced Mutual Information in Temporal Lobe Epilepsy

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seizure and synchronization are related to each other in complex manner. Altered synchrony has been implicated in loss of consciousness during partial seizures. However, the mechanism of altered consciousness following termination of seizures has not been studied well. In this work we used bivariate mutual information as a measure of synchronization to understand the neural correlate of altered consciousness during and after termination of mesial temporal lobe onset seizures. First, we have compared discrete bivariate mutual information (MI) measure with amplitude correlation (AC), phase synchronization (PS), nonlinear correlation and coherence, and established MI as a robust measure of synchronization. Next, we have extended MI to more than two signals by principal component method. The extended MI was applied on intracranial electroencephalogram (iEEG) before, during and after 23 temporal lobe seizures recorded from 11 patients. The analyses were carried out in delta, theta, alpha, beta and gamma bands. In 77% of the complex partial seizures MI was higher towards the seizure offset than in the first half of the seizure in the seizure onset zone (SOZ) channels in beta and gamma bands, whereas MI remained higher in the beginning or in the middle of the seizure than towards the offset across the least involved channels in the same bands. Synchronization seems built up outside the SOZ, gradually spread and culminated in SOZ and remained high beyond offset leading to impaired consciousness in 82% of the complex partial temporal lobe seizures. Consciousness impairment was scored according to a method previously applied to assess the same in patients with temporal lobe epilepsy during seizure.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Perception's shadow: long-distance synchronization of human brain activity.

          Transient periods of synchronization of oscillating neuronal discharges in the frequency range 30-80 Hz (gamma oscillations) have been proposed to act as an integrative mechanism that may bring a widely distributed set of neurons together into a coherent ensemble that underlies a cognitive act. Results of several experiments in animals provide support for this idea. In humans, gamma oscillations have been described both on the scalp (measured by electroencephalography and magnetoencephalography) and in intracortical recordings, but no direct participation of synchrony in a cognitive task has been demonstrated so far. Here we record electrical brain activity from subjects who are viewing ambiguous visual stimuli (perceived either as faces or as meaningless shapes). We show for the first time, to our knowledge, that only face perception induces a long-distance pattern of synchronization, corresponding to the moment of perception itself and to the ensuing motor response. A period of strong desynchronization marks the transition between the moment of perception and the motor response. We suggest that this desynchronization reflects a process of active uncoupling of the underlying neural ensembles that is necessary to proceed from one cognitive state to another.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synchronization of neural activity across cortical areas correlates with conscious perception.

            Subliminal stimuli can be deeply processed and activate similar brain areas as consciously perceived stimuli. This raises the question which signatures of neural activity critically differentiate conscious from unconscious processing. Transient synchronization of neural activity has been proposed as a neural correlate of conscious perception. Here we test this proposal by comparing the electrophysiological responses related to the processing of visible and invisible words in a delayed matching to sample task. Both perceived and nonperceived words caused a similar increase of local (gamma) oscillations in the EEG, but only perceived words induced a transient long-distance synchronization of gamma oscillations across widely separated regions of the brain. After this transient period of temporal coordination, the electrographic signatures of conscious and unconscious processes continue to diverge. Only words reported as perceived induced (1) enhanced theta oscillations over frontal regions during the maintenance interval, (2) an increase of the P300 component of the event-related potential, and (3) an increase in power and phase synchrony of gamma oscillations before the anticipated presentation of the test word. We propose that the critical process mediating the access to conscious perception is the early transient global increase of phase synchrony of oscillatory activity in the gamma frequency range.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients

                Bookmark

                Author and article information

                Journal
                26 January 2018
                Article
                1801.08950
                07ae7db2-d0a8-4137-b4d7-e6d6b58483d3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                30 pages, 5 figures, 8 tables, under review in Brain Topography
                q-bio.NC

                Comments

                Comment on this article