3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chiral and SHG-Active Metal–Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate the formation of uniform and oriented metal–organic frameworks using a combination of anion effects and surface chemistry. Subtle but significant morphological changes result from the nature of the coordinative counteranion of the following metal salts: NiX 2 with X = Br , Cl , NO 3 , and OAc . Crystals could be obtained in solution or by template surface growth. The latter results in truncated crystals that resemble a half structure of the solution-grown ones. The oriented surface-bound metal–organic frameworks (sMOFs) are obtained via a one-step solvothermal approach rather than in a layer-by-layer approach. The MOFs are grown on Si/SiOx substrates modified with an organic monolayer or on glass substrates covered with a transparent conductive oxide (TCO). Regardless of the different morphologies, the crystallographic packing is nearly identical and is not affected by the type of anion or by solution versus the surface chemistry. A propeller-type arrangement of the nonchiral ligands around the metal center affords a chiral structure with two geometrically different helical channels in a 2:1 ratio with the same handedness. To demonstrate the accessibility and porosity of the macroscopically oriented channels, a chromophore (resorufin sodium salt) was successfully embedded into the channels of the crystals by diffusion from solution, resulting in fluorescent crystals. These “ colored” crystals displayed polarized emission (red) with a high polarization ratio because of the alignment of these dyes imposed by the crystallographic structure. A second-harmonic generation (SHG) study revealed Kleinman symmetry-forbidden nonlinear optical properties. These surface-bound and oriented SHG-active MOFs have the potential for use as single nonlinear optical (NLO) devices.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Functional Porous Coordination Polymers

          The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metal-organic frameworks (MOFs).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen storage in microporous metal-organic frameworks.

              Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.
                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J. Am. Chem. Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                10 July 2020
                19 August 2020
                : 142
                : 33
                : 14210-14221
                Affiliations
                [1] Department of Organic Chemistry, Department of Chemical Research Support, and §Physics of Complex Systems, Weizmann Institute of Science , Rehovot 7610001, Israel
                Author notes
                Article
                10.1021/jacs.0c05384
                7497644
                07b54033-fb80-4f26-808d-4624833545c2
                Copyright © 2020 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 16 May 2020
                Categories
                Article
                Custom metadata
                ja0c05384
                ja0c05384

                Chemistry
                Chemistry

                Comments

                Comment on this article