8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The GPCR accessory protein MRAP2 regulates both biased signaling and constitutive activity of the ghrelin receptor GHSR1a

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ghrelin is a hormone secreted by the stomach during fasting periods and acts through its receptor, the growth hormone secretagogue 1a (GHSR1a), to promote food intake and prevent hypoglycemia. As such, GHSR1a is an important regulator of energy and glucose homeostasis and a target for the treatment of obesity. Here, we showed that the accessory protein MRAP2 altered GHSR1a signaling by inhibiting its constitutive activity, as well as by enhancing its G protein–dependent signaling and blocking the recruitment and signaling of β-arrestin in response to ghrelin. In addition, the effects of MRAP2 on the Gα q and β-arrestin pathways were independent and involved distinct regions of MRAP2. These findings may have implications for the regulation of ghrelin function in vivo and the role of MRAP2 in energy homeostasis. They also show that accessory proteins can bias signaling downstream of GPCRs in response to their endogenous agonist.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The Rho family GTPases RhoA, Racl , and CDC42Hsregulate transcriptional activation by SRF

          Cell, 81(7), 1159-1170
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice.

            Ghrelin O-acyltransferase (GOAT) attaches octanoate to proghrelin, which is processed to ghrelin, an octanoylated peptide hormone that stimulates release of growth hormone (GH) from pituitary cells. Elimination of the gene encoding ghrelin or its receptor produces only mild phenotypes in mice. Thus, the essential function of ghrelin is obscure. Here, we eliminate the Goat gene in mice, thereby eliminating all octanoylated ghrelin from blood. On normal or high fat diets, Goat(-/-) mice grew and maintained the same weights as wild-type (WT) littermates. When subjected to 60% calorie restriction, WT and Goat(-/-) mice both lost 30% of body weight and 75% of body fat within 4 days. In both lines, fasting blood glucose initially declined equally. After 4 days, glucose stabilized in WT mice at 58-76 mg/dL. In Goat(-/-) mice, glucose continued to decline, reaching 12-36 mg/dL on day 7. At this point, WT mice showed normal physical activity, whereas Goat(-/-) mice were moribund. GH rose progressively in calorie-restricted WT mice and less in Goat(-/-) mice. Infusion of either ghrelin or GH normalized blood glucose in Goat(-/-) mice and prevented death. Thus, an essential function of ghrelin in mice is elevation of GH levels during severe calorie restriction, thereby preserving blood glucose and preventing death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist.

              Ghrelin is a GH-releasing peptide that also has an important role as an orexigenic hormone-stimulating food intake. By measuring inositol phosphate turnover or by using a reporter assay for transcriptional activity controlled by cAMP-responsive elements, the ghrelin receptor showed strong, ligand-independent signaling in transfected COS-7 or human embryonic kidney 293 cells. Ghrelin and a number of the known nonpeptide GH secretagogues acted as agonists stimulating inositol phosphate turnover further. In contrast, the low potency ghrelin antagonist, [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-substance P was surprisingly found to be a high potency (EC50 = 5.2 nm) full inverse agonist as it decreased the constitutive signaling of the ghrelin receptor down to that observed in untransfected cells. The homologous motilin receptor functioned as a negative control as it did not display any sign of constitutive activity; however, upon agonist stimulation the motilin receptor signaled as strongly as the unstimulated ghrelin receptor. It is concluded that the ghrelin receptor is highly constitutively active and that this activity could be of physiological importance in its role as a regulator of both GH secretion and appetite control. It is suggested that inverse agonists for the ghrelin receptor could be particularly interesting for the treatment of obesity.
                Bookmark

                Author and article information

                Journal
                Science Signaling
                Sci. Signal.
                American Association for the Advancement of Science (AAAS)
                1945-0877
                1937-9145
                January 07 2020
                January 07 2020
                January 07 2020
                January 07 2020
                : 13
                : 613
                : eaax4569
                Article
                10.1126/scisignal.aax4569
                7291826
                31911434
                07bdeae6-de55-46e1-ac8e-e4e75615121d
                © 2020

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article