57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Improving the forecast for biodiversity under climate change.

      Science (New York, N.Y.)
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes. We describe and prioritize the biological information needed to inform more realistic projections of species' responses to climate change. We also highlight how trait-based approaches and adaptive modeling can leverage sparse data to make broader predictions. We outline a global effort to collect the data necessary to better understand, anticipate, and reduce the damaging effects of climate change on biodiversity.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolution and Ecology of Species Range Limits

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A framework for community interactions under climate change.

            Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face. Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community. Failure to incorporate these interactions limits the ability to predict responses of species to climate change. We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Climate change, adaptation, and phenotypic plasticity: the problem and the evidence

              Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.
                Bookmark

                Author and article information

                Journal
                27609898
                10.1126/science.aad8466

                Comments

                Comment on this article