62
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease.

          Author Summary

          Severe Acute Respiratory Syndrome (SARS) occurred in human populations in 2002–2003 and was caused by a novel coronavirus (CoV). Human SARS was characterized by prolonged virus excretion, lymphopenia and delayed adaptive immune responses in patients with severe disease. Recently, small animal models have been developed that mimic some of the features of the human disease. Specifically, BALB/c mice infected with mouse-adapted SARS-CoV develop severe respiratory disease. Here, we show that the T cell response is defective in these mice and that this results from inefficient activation of the initial immune response to the virus. This defect can be corrected by several treatments, including depletion of inhibitory macrophages from the lungs and direct activation of respiratory dendritic cells, important in initiating the immune response or transfer of activated dendritic cells prior to infection. All of these modalities result in improved initiation of the immune response and an enhanced anti-virus T cell response. Inefficient activation of the immune response may play a role in human SARS, and our results suggest possible strategies that might be used to develop novel anti-viral therapies.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Coronavirus as a possible cause of severe acute respiratory syndrome.

          An outbreak of severe acute respiratory syndrome (SARS) has been reported in Hong Kong. We investigated the viral cause and clinical presentation among 50 patients. We analysed case notes and microbiological findings for 50 patients with SARS, representing more than five separate epidemiologically linked transmission clusters. We defined the clinical presentation and risk factors associated with severe disease and investigated the causal agents by chest radiography and laboratory testing of nasopharyngeal aspirates and sera samples. We compared the laboratory findings with those submitted for microbiological investigation of other diseases from patients whose identity was masked. Patients' age ranged from 23 to 74 years. Fever, chills, myalgia, and cough were the most frequent complaints. When compared with chest radiographic changes, respiratory symptoms and auscultatory findings were disproportionally mild. Patients who were household contacts of other infected people and had older age, lymphopenia, and liver dysfunction were associated with severe disease. A virus belonging to the family Coronaviridae was isolated from two patients. By use of serological and reverse-transcriptase PCR specific for this virus, 45 of 50 patients with SARS, but no controls, had evidence of infection with this virus. A coronavirus was isolated from patients with SARS that might be the primary agent associated with this disease. Serological and molecular tests specific for the virus permitted a definitive laboratory diagnosis to be made and allowed further investigation to define whether other cofactors play a part in disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4.

            The inflammatory toxicity of lipopolysaccharide (LPS), a component of bacterial cell walls, is driven by the adaptor proteins myeloid differentiation factor 88 (MyD88) and Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta (TRIF), which together mediate signaling by the endotoxin receptor Toll-like receptor 4 (TLR4). Monophosphoryl lipid A (MPLA) is a low-toxicity derivative of LPS with useful immunostimulatory properties, which is nearing regulatory approval for use as a human vaccine adjuvant. We report here that, in mice, the low toxicity of MPLA's adjuvant function is associated with a bias toward TRIF signaling, which we suggest is likely caused by the active suppression, rather than passive loss, of proinflammatory activity of this LPS derivative. This finding may have important implications for the development of future vaccine adjuvants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications.

              Selective depletion of macrophages from tissues in vivo can be used to investigate whether these cells are playing a role in defined biological processes. This question is particularly relevant to various host defense mechanisms. We have developed a macrophage 'suicide' technique, using the liposome mediated intracellular delivery of dichloromethylene-bisphosphonate (Cl2MBP or clodronate). The method is specific with respect to phagocytic cells of the mononuclear phagocyte system (MPS) for the following reasons: (1) The natural fate of liposomes is phagocytosis. (2) Once ingested by macrophages, the phospholipid bilayers of the liposomes are disrupted under the influence of lysosomal phospholipases. (3) Cl2MBP intracellularly released in this way does not easily escape from the cell by crossing the cell membranes. (4) Cl2MBP released in the circulation from dead macrophages or by leakage from liposomes, will not easily enter non-phagocytic cells and has an extremely short half life in the circulation and body fluids. In the present review, the preparation of Cl2MBP-liposomes has been described in detail. Furthermore, the mechanism of action of the new approach and its applicabilities are discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2009
                October 2009
                23 October 2009
                : 5
                : 10
                : e1000636
                Affiliations
                [1 ]Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
                [2 ]Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
                [3 ]Department of Molecular Cell Biology, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
                University of Washington, United States of America
                Author notes

                Conceived and designed the experiments: Jincun Zhao, Stanley Perlman. Performed the experiments: Jincun Zhao, Jingxian Zhao. Analyzed the data: Jincun Zhao, Stanley Perlman. Contributed reagents/materials/analysis tools: Nico Van Rooijen. Wrote the paper: Jincun Zhao, Stanley Perlman.

                Article
                09-PLPA-RA-1098R3
                10.1371/journal.ppat.1000636
                2762542
                19851468
                07c318c6-1210-4282-bfa7-fac84846737d
                Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 July 2009
                : 25 September 2009
                Page count
                Pages: 17
                Categories
                Research Article
                Immunology/Cellular Microbiology and Pathogenesis
                Immunology/Immunity to Infections
                Virology/Animal Models of Infection
                Virology/Emerging Viral Diseases
                Virology/Host Antiviral Responses
                Virology/Immune Evasion

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article