9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protein secondary structure prediction based on position-specific scoring matrices.

      Journal of Molecular Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A two-stage neural network has been used to predict protein secondary structure based on the position specific scoring matrices generated by PSI-BLAST. Despite the simplicity and convenience of the approach used, the results are found to be superior to those produced by other methods, including the popular PHD method according to our own benchmarking results and the results from the recent Critical Assessment of Techniques for Protein Structure Prediction experiment (CASP3), where the method was evaluated by stringent blind testing. Using a new testing set based on a set of 187 unique folds, and three-way cross-validation based on structural similarity criteria rather than sequence similarity criteria used previously (no similar folds were present in both the testing and training sets) the method presented here (PSIPRED) achieved an average Q3 score of between 76.5% to 78.3% depending on the precise definition of observed secondary structure used, which is the highest published score for any method to date. Given the success of the method in CASP3, it is reasonable to be confident that the evaluation presented here gives a fair indication of the performance of the method in general.

          Related collections

          Author and article information

          Journal
          10493868
          10.1006/jmbi.1999.3091

          Comments

          Comment on this article

          scite_