• Record: found
  • Abstract: found
  • Article: found

Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering

1,*, 1, 1, 1

International Polymer Processing

Carl Hanser Verlag


Read Bookmark
There is no summary for this article yet


Traditional methods for polymer processing involve the use of hazardous organic solvents which may compromise the biological function of scaffolds in tissue engineering. Indeed, the toxic effect of them on biological microenvironment has a tremendous impact on cell fate so altering the main activities involved in in vitro tissue formation. To date, extensive researches focus on seeking newer methods for bio-safely processing polymeric biomaterials to be implanted in the human body. Here, we aim at over viewing two approaches based on solvent free or green solvent based processes in order to identify alternative solutions to fabricate bio-inspired scaffolds to be successfully used in regenerative and degenerative medicine.

Related collections

Most cited references 88

  • Record: found
  • Abstract: found
  • Article: not found

Porosity of 3D biomaterial scaffolds and osteogenesis.

Porosity and pore size of biomaterial scaffolds play a critical role in bone formation in vitro and in vivo. This review explores the state of knowledge regarding the relationship between porosity and pore size of biomaterials used for bone regeneration. The effect of these morphological features on osteogenesis in vitro and in vivo, as well as relationships to mechanical properties of the scaffolds, are addressed. In vitro, lower porosity stimulates osteogenesis by suppressing cell proliferation and forcing cell aggregation. In contrast, in vivo, higher porosity and pore size result in greater bone ingrowth, a conclusion that is supported by the absence of reports that show enhanced osteogenic outcomes for scaffolds with low void volumes. However, this trend results in diminished mechanical properties, thereby setting an upper functional limit for pore size and porosity. Thus, a balance must be reached depending on the repair, rate of remodeling and rate of degradation of the scaffold material. Based on early studies, the minimum requirement for pore size is considered to be approximately 100 microm due to cell size, migration requirements and transport. However, pore sizes >300 microm are recommended, due to enhanced new bone formation and the formation of capillaries. Because of vascularization, pore size has been shown to affect the progression of osteogenesis. Small pores favored hypoxic conditions and induced osteochondral formation before osteogenesis, while large pores, that are well-vascularized, lead to direct osteogenesis (without preceding cartilage formation). Gradients in pore sizes are recommended for future studies focused on the formation of multiple tissues and tissue interfaces. New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.
  • Record: found
  • Abstract: found
  • Article: not found

The design of scaffolds for use in tissue engineering. Part I. Traditional factors.

In tissue engineering, a highly porous artificial extracellular matrix or scaffold is required to accommodate mammalian cells and guide their growth and tissue regeneration in three dimensions. However, existing three-dimensional scaffolds for tissue engineering proved less than ideal for actual applications, not only because they lack mechanical strength, but they also do not guarantee interconnected channels. In this paper, the authors analyze the factors necessary to enhance the design and manufacture of scaffolds for use in tissue engineering in terms of materials, structure, and mechanical properties and review the traditional scaffold fabrication methods. Advantages and limitations of these traditional methods are also discussed.
  • Record: found
  • Abstract: found
  • Article: not found

Biomimetic materials for tissue engineering.

Xiao Ma (2008)
Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or wound healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/wound healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration.

Author and article information

1 Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
Author notes
[*] Correspondence address, Mail address: Vincenzo Guarino, Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V.le Kennedy 54, 80125 Naples, Italy. E-mail:
International Polymer Processing
Carl Hanser Verlag
18 November 2016
: 31
: 5
: 587-597
© 2016, Carl Hanser Verlag, Munich
References: 89, Pages: 11
Special Issue Contributions
ScienceOpen disciplines:


Comment on this article