+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of evoked and spontaneous quantal release at high pressure in crustacean excitatory synapses.

      Pflugers Archiv

      physiology, Air Pressure, Animals, Axons, Electrophysiology, Glutamic Acid, In Vitro Techniques, Muscles, innervation, Nephropidae, Neuromuscular Junction, Patch-Clamp Techniques, Synapses

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The cellular mechanisms underlying the effect of high pressure on synaptic transmission were studied in the opener muscle of the lobster walking leg. Excitatory postsynaptic currents (EPSCs) were recorded using a loose macropatch-clamp technique at normal pressure and 3.5, 6.9 MPa helium pressure. Responses of the single excitatory axon could be grouped into two types: low-yield (L) synapses exhibiting small EPSCs with a considerable number of failures, and high-yield (H) synapses having larger EPSCs with very few failures. High pressure reduced the average EPSC amplitude in all synapses and shifted their amplitude histograms to the left by decreasing the quantal content (m) without changing their quantum current (q). A binomial distribution fit of EPSC amplitudes revealed that high pressure greatly decreased n, the number of available active zones, but the effect on p, the probability of release for each zone, was not consistent. Many of the spontaneous miniature EPSCs (mEPSCs), observed only in L-type synapses, were "giant" (size = 2-5 q). High pressure increased the frequency of the giant mEPSCs but had little effect on their amplitude histogram. High pressure depressed evoked synaptic transmission by modulating the presynaptic quantal release parameters, but concomitantly enhanced spontaneous quantal release by an unknown mechanism.

          Related collections

          Author and article information



          Comment on this article