43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Endonuclease G is an apoptotic DNase when released from mitochondria.

      Nature

      Animals, Apoptosis, Caspase 8, Caspase 9, Caspases, metabolism, Cytochrome c Group, DNA, radiation effects, Endodeoxyribonucleases, Humans, In Vitro Techniques, Mice, Mitochondria, Liver, enzymology, Proteins, Recombinant Proteins, Ultraviolet Rays

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleosomal fragmentation of DNA is a hallmark of apoptosis (programmed cell death), and results from the activation of nucleases in cells undergoing apoptosis. One such nuclease, DNA fragmentation factor (DFF, a caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD)), is capable of inducing DNA fragmentation and chromatin condensation after cleavage by caspase-3 (refs 2,3,4). However, although transgenic mice lacking DFF45 or its caspase cleavage site have significantly reduced DNA fragmentation, these mice still show residual DNA fragmentation and are phenotypically normal. Here we report the identification and characterization of another nuclease that is specifically activated by apoptotic stimuli and is able to induce nucleosomal fragmentation of DNA in fibroblast cells from embryonic mice lacking DFF. This nuclease is endonuclease G (endoG), a mitochondrion-specific nuclease that translocates to the nucleus during apoptosis. Once released from mitochondria, endoG cleaves chromatin DNA into nucleosomal fragments independently of caspases. Therefore, endoG represents a caspase-independent apoptotic pathway initiated from the mitochondria.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: not found

          Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.

          We report here that BID, a BH3 domain-containing proapoptotic Bcl2 family member, is a specific proximal substrate of Casp8 in the Fas apoptotic signaling pathway. While full-length BID is localized in cytosol, truncated BID (tBID) translocates to mitochondria and thus transduces apoptotic signals from cytoplasmic membrane to mitochondria. tBID induces first the clustering of mitochondria around the nuclei and release of cytochrome c independent of caspase activity, and then the loss of mitochondrial membrane potential, cell shrinkage, and nuclear condensation in a caspase-dependent fashion. Coexpression of BclxL inhibits all the apoptotic changes induced by tBID. Our results indicate that BID is a mediator of mitochondrial damage induced by Casp8.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular characterization of mitochondrial apoptosis-inducing factor.

            Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD95's deadly mission in the immune system.

              Apoptosis in the immune system is a fundamental process regulating lymphocyte maturation, receptor repertoire selection and homeostasis. Thus, death by apoptosis is as essential for the function of lymphocytes as growth and differentiation. This article focuses on death receptor-associated apoptosis and the role of CD95 (Apo-1/Fas)-mediated signalling in T-cell and B-cell development and during the course of an immune response. Gaining an insight into these processes improves our understanding of the pathogenesis of diseases such as cancer, autoimmunity and AIDS, and opens new approaches to rational treatment strategies.
                Bookmark

                Author and article information

                Journal
                11452314
                10.1038/35083620

                Comments

                Comment on this article