4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context. The Event Horizon Telescope (EHT) collaboration recently obtained first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. Aims. We want to develop a simple analytic disk model for the accretion flow of M87*. Compared to general-relativistic magnetohydrodynamic (GRMHD) models, it has the advantage of being independent of the turbulent character of the flow, and controlled by only few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87* assuming that it is either a Kerr black hole, or an alternative compact object. Methods. We compute the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer by means of relativistic ray tracing. Such computations are performed assuming different spacetimes (Kerr, Minkowski, non-rotating ultracompact star, rotating boson star or Lamy spinning wormhole). We perform numerical fits of these models to the EHT data. Results. We discuss the highly-lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow properties, and not only to gravitation. This fact is illustrated by the notion of secondary ring that we introduce. Our model of spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in similar quality of the numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong test of the Kerr spacetime may be out of reach with the current data. We notice that future developments of the EHT could alter this situation. Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime in order to be able to test the Kerr paradigm unambiguously.

          Related collections

          Author and article information

          Journal
          21 February 2020
          Article
          2002.09226
          07f0d615-8f43-400c-808e-519bb5bad5e5

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          21 pages, 20 figures, submitted to A&A
          gr-qc astro-ph.HE

          General relativity & Quantum cosmology,High energy astrophysical phenomena

          Comments

          Comment on this article