+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The value of time-averaged serum high-sensitivity C-reactive protein in prediction of mortality and dropout in peritoneal dialysis patients

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          C-reactive protein (CRP) is a useful biomarker for prediction of long-term outcomes in patients undergoing chronic dialysis. This observational cohort study evaluated whether the time-averaged serum high-sensitivity CRP (HS-CRP) level was a better predictor of clinical outcomes than a single HS-CRP level in patients undergoing peritoneal dialysis (PD).

          Patients and methods

          We classified 335 patients into three tertiles according to the time-averaged serum HS-CRP level and followed up regularly from January 2010 to December 2014. Clinical outcomes such as cardiovascular events, infection episodes, newly developed malignancy, encapsulating peritoneal sclerosis (EPS), dropout (death plus conversion to hemodialysis), and mortality were assessed.


          During a 5-year follow-up, 164 patients (49.0%) ceased PD; this included 52 patient deaths (15.5%), 100 patients (29.9%) who converted to hemodialysis, and 12 patients (3.6%) who received a kidney transplantation. The Kaplan–Meier survival analysis and log-rank test revealed a significantly worse survival accumulation in patients with high time-average HS-CRP levels. A multivariate Cox regression analysis revealed that a higher time-averaged serum HS-CRP level, older age, and the occurrence of cardiovascular events were independent mortality predictors. A higher time-averaged serum HS-CRP level, the occurrence of cardiovascular events, infection episodes, and EPS were important predictors of dropout. The receiver operating characteristic analysis verified that the value of the time-average HS-CRP level in predicting the 5-year mortality and dropout was superior to a single serum baseline HS-CRP level.


          This study shows that the time-averaged serum HS-CRP level is a better marker than a single baseline measurement in predicting the 5-year mortality and dropout in PD patients.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS).

          Inflammation has been suggested as a risk factor for the development of atherosclerosis. Recently, some components of the insulin resistance syndrome (IRS) have been related to inflammatory markers. We hypothesized that insulin insensitivity, as directly measured, may be associated with inflammation in nondiabetic subjects. We studied the relation of C-reactive protein (CRP), fibrinogen, and white cell count to components of IRS in the nondiabetic population of the Insulin Resistance Atherosclerosis Study (IRAS) (n=1008; age, 40 to 69 years; 33% with impaired glucose tolerance), a multicenter, population-based study. None of the subjects had clinical coronary artery disease. Insulin sensitivity (S(I)) was measured by a frequently sampled intravenous glucose tolerance test, and CRP was measured by a highly sensitive competitive immunoassay. All 3 inflammatory markers were correlated with several components of the IRS. Strong associations were found between CRP and measures of body fat (body mass index, waist circumference), S(I), and fasting insulin and proinsulin (all correlation coefficients >0.3, P<0.0001). The associations were consistent among the 3 ethnic groups of the IRAS. There was a linear increase in CRP levels with an increase in the number of metabolic disorders. Body mass index, systolic blood pressure, and S(I) were related to CRP levels in a multivariate linear regression model. We suggest that chronic subclinical inflammation is part of IRS. CRP, a predictor of cardiovascular events in previous reports, was independently related to S(I). These findings suggest potential benefits of anti-inflammatory or insulin-sensitizing treatment strategies in healthy individuals with features of IRS.
            • Record: found
            • Abstract: found
            • Article: not found

            Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase.

            HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated (r2 = 0.77, n = 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentration-dependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL. Compared with control HDL, HDL from PON-treated serum showed a 66% prolongation in the lag phase of its oxidation, and up to a 40% reduction in peroxide and aldehyde content. In contrast, in the presence of various PON inhibitors, HDL oxidation induced by either copper ions or by a free radical generating system was markedly enhanced. As PON inhibited HDL oxidation, two major functions of HDL were assessed: macrophage cholesterol efflux, and LDL protection from oxidation. Compared with oxidized untreated HDL, oxidized PON-treated HDL caused a 45% increase in cellular cholesterol efflux from J-774 A.1 macrophages. Both HDL-associated PON and purified PON were potent inhibitors of LDL oxidation. Searching for a possible mechanism for PON-induced inhibition of HDL oxidation revealed PON (2 paraoxonase U/ml)-mediated hydrolysis of lipid peroxides (by 19%) and of cholesteryl linoleate hydroperoxides (by 90%) in oxidized HDL. HDL-associated PON, as well as purified PON, were also able to substantially hydrolyze (up to 25%) hydrogen peroxide (H2O2), a major reactive oxygen species produced under oxidative stress during atherogenesis. Finally, we analyzed serum PON activity in the atherosclerotic apolipoprotein E-deficient mice during aging and development of atherosclerotic lesions. With age, serum lipid peroxidation and lesion size increased, whereas serum PON activity decreased. We thus conclude that HDL-associated PON possesses peroxidase-like activity that can contribute to the protective effect of PON against lipoprotein oxidation. The presence of PON in HDL may thus be a major contributor to the antiatherogenicity of this lipoprotein.
              • Record: found
              • Abstract: found
              • Article: not found

              High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells.

              Monocyte activation and adhesion to the endothelium play important roles in inflammatory and cardiovascular diseases. These processes are further aggravated by hyperglycemia, leading to cardiovascular complications in diabetes. We have previously shown that high glucose (HG) treatment activates monocytes and induces the expression of tumor necrosis factor (TNF)-alpha via oxidant stress and nuclear factor-kB transcription factor. To determine the effects of HG on the expression of other inflammatory genes, in the present study, HG-induced gene profiling was performed in THP-1 monocytes using cytokine gene arrays containing 375 known genes. HG treatment upregulated the expression of 41 genes and downregulated 15 genes that included chemokines, cytokines, chemokines receptors, adhesion molecules, and integrins. RT-PCR analysis further confirmed that HG significantly increased the expression of monocyte chemoattractant protein-1 (MCP-1), TNF-alpha, beta(2)-integrin, interleukin-1beta, and others. HG treatment increased transcription of the MCP-1 gene, MCP-1 protein levels, and adhesion of THP-1 cells to endothelial cells. HG-induced MCP-1 mRNA expression and monocyte adhesion were blocked by specific inhibitors of oxidant stress, protein kinase C, ERK1/2, and p38 mitogen-activated protein kinases. These results show for the first time that multiple inflammatory cytokines and chemokines relevant to the pathogenesis of diabetes complications are induced by HG via key signaling pathways.

                Author and article information

                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                16 August 2017
                : 13
                : 1009-1021
                [1 ]Kidney Research Center, Department of Nephrology, Lin-Kou Chang Gung Memorial Hospital and Department of Medicine, Chang Gung University, Taoyuan, Taiwan
                [2 ]Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
                [3 ]Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
                Author notes
                Correspondence: Ya-Chung Tian, Department of Nephrology, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei 105, Taiwan (R.O.C.), Tel +886 3 328 1200 (ext 8181), Fax +886 3 328 2173, Email dryctian@ 123456adm.cgmh.org.tw

                These authors contributed equally to this work

                © 2017 Liu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article