16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta).

      Molecular Phylogenetics and Evolution
      Animals, Base Composition, Carbon-Nitrogen Ligases, genetics, DNA, Ribosomal, Diptera, physiology, Evolution, Molecular, Genetic Variation, Heterozygote, Insect Proteins, Introns, Molecular Sequence Data, Phylogeny, Protein Structure, Tertiary

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We sequenced nearly the entire carbomoylphosphate synthase (CPS) domain of CAD, or rudimentary, (ca. 4 kb) from 29 species of flies representing all major clades within Eremoneura, or higher flies, and several orthorrhaphous brachyceran outgroups. We compared these sequences with orthologs from Anopheles gambiae and Drosophila melanogaster to assess structure, compositional bias, and phylogenetic utility. CAD is large (6.6+ kb), complex (comprised of three major and myriad minor functional domains) and relatively free of introns, extreme nucleotide bias (except third codon positions), and large hypervariable regions. The CPS domain possesses moderate levels of nonsynonymous divergence among taxa of intermediate evolutionary age and conveys considerable phylogenetic signal. Phylogenetic analysis of CPS sequences under varying methods and assumptions resulted in well-resolved, strongly supported trees concordant with many traditional ideas about higher dipteran phylogeny and with prior inferences from 28S rDNA. The most robustly supported major eremoneuran clades were Cyclorrhapha, Platypezoidea, Eumuscomorpha, Empidoidea, Atelestidae, Empidoidea exclusive of Atelestidae, Hybotidae s.l., Microphoridae+Dolichopodidae, and Empididae s. str. Because CAD is ubiquitous, apparently single copy (at least within holometabolous insects), readily obtained from several insect orders using primers described herein, and exhibits considerable phylogenetic utility, it should have wide applicability in insect molecular systematics.

          Related collections

          Author and article information

          Comments

          Comment on this article