19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TGF-β-induced IOP elevations are mediated by RhoA in the early but not the late fibrotic phase of open angle glaucoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Elevations in intraocular pressure (IOP) are associated with the development of glaucoma and loss of sight. High transforming growth factor-β (TGF-β) 1 levels in the eye’s anterior chamber can lead to dysfunctional contractions through RhoA signaling in trabecular meshwork (TM) cells and IOP spikes. Sustained high TGF-β levels leads to TM fibrosis and sustained increases in IOP. We investigated whether inhibiting RhoA, using a siRNA-mediated RhoA (siRhoA), controls IOP by altering TM expression of fibrosis and contractility-related proteins in a rodent model of glaucoma.

          Methods

          TGF-β was injected intracamerally twice a week into adult Sprague Dawley rats, and IOP was recorded with tonometry. Animals were euthanized on day 7 and 35 with TM expression of fibrosis and contractility-related proteins, as well as survival of retinal ganglion cells (RGCs) assessed with immunohistochemistry. siRNA against RhoA or enhanced green fluorescent protein (EGFP) was also injected intracamerally into select animals. Successful RhoA knockdown was determined with quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, and the effects of the knockdown on the parameters above analyzed.

          Results

          TGF-β caused increased TM contractile proteins and IOP spikes by day 7, sustained increases in IOP from day 15, and TM fibrosis at day 35. siRhoA abolished the transient 7 day IOP rise but not the later sustained IOP increase (due to fibrosis). At 35 days, TGF-β-related RGC loss was not prevented with siRhoA treatment.

          Conclusions

          We conclude that RhoA signaling mediates the early IOP rise induced by TM cellular changes associated with contractility but not the sustained IOP elevation caused by TM fibrosis. Thus, RhoA therapies offer a clinically relevant opportunity for IOP management, likely through the modulation of TM contractility, but appear to be ineffective in the amelioration of fibrosis.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Adhesion signaling - crosstalk between integrins, Src and Rho.

          Interactions between cells and the extracellular matrix coordinate signaling pathways that control various aspects of cellular behavior. Integrins sense the physical properties of the extracellular matrix and organize the cytoskeleton accordingly. In turn, this modulates signaling pathways that are triggered by various other transmembrane receptors and augments the cellular response to growth factors. Over the past years, it has become clear that there is extensive crosstalk between integrins, Src-family kinases and Rho-family GTPases at the heart of such adhesion signaling. In this Commentary, we discuss recent advances in our understanding of the dynamic regulation of the molecular connections between these three protein families. We also discuss how this signaling network can regulate a range of cellular processes that are important for normal tissue function and disease, including cell adhesion, spreading, migration and mechanotransduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma.

            To study the risk associated with diurnal intraocular pressure (IOP) variations in patients with open-angle glaucoma. Sixty-four patients (105 eyes) from the practices of two glaucoma specialists successfully performed home tonometry with a self-tonometer five times a day for 5 days. All patients had open-angle glaucoma and documented IOP below 25 mm Hg over a mean follow-up period of 5 years. Baseline status and time to progression of visual field loss were identified from the clinical charts. The level and variability of diurnal IOP obtained using home tonometry were characterized. Risk of progression was analyzed using a nonparametric time-to-event model, incorporating methods for correlated outcomes. Although mean home IOP and baseline office IOP were similar (16.4 +/- 3.6 mm Hg and 17.6 +/- 3.2 mm Hg, respectively), the average IOP range over the 5 days of home tonometry was 10.0 +/- 2.9 mm Hg. Baseline office IOP had no predictive value (relative hazard, 0.98). The diurnal IOP range and the IOP range over multiple days were significant risk factors for progression, even after adjusting for office IOP, age, race, gender, and visual field damage at baseline (relative hazards [95% confidence intervals], 5.69 [1.86, 17.35] and 5.76 [2.21, 14.98]). Eighty-eight percent of patients in the upper twenty-fifth percentile of IOP and 57% of patients in the lower twenty-fifth percentile progressed within 8 years. In patients with glaucoma with office IOP in the normal range, large fluctuations in diurnal IOP are a significant risk factor, independent of parameters obtained in the office. Fluctuations in IOP may be important in managing patients with glaucoma. Development of methods to control fluctuations in IOP may be warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of an interferon response by RNAi vectors in mammalian cells.

              DNA vectors that express short hairpin RNAs (shRNAs) from RNA polymerase III (Pol III) promoters are a promising new tool to reduce gene expression in mammalian cells. shRNAs are processed to small interfering RNAs (siRNAs) of 21 nucleotides (nt) that guide the cleavage of the cognate mRNA by the RNA-induced silencing complex. Although siRNAs are thought to be too short to induce interferon expression, we report here that a substantial number of shRNA vectors can trigger an interferon response.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                Mol. Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2018
                29 October 2018
                : 24
                : 712-726
                Affiliations
                [1 ]Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
                [2 ]Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
                [3 ]Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
                [4 ]Research Division, Quark Pharmaceuticals, Ness Ziona, Israel
                [5 ]Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
                Author notes

                The first two and last two authors contributed equally to this study

                Correspondence to: Lisa Hill, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Phone: +44(0) 0121 414 6620; email: L.J.Hill@ 123456bham.ac.uk
                Article
                60 2018MOLVIS0009
                6205807
                07f9f799-285e-49b1-80bf-8cb04a9c0391
                Copyright © 2018 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.

                History
                : 09 January 2018
                : 25 October 2018
                Categories
                Research Article
                Custom metadata
                Export to XML

                Vision sciences
                Vision sciences

                Comments

                Comment on this article