133
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy and Safety of the RTS,S/AS01 Malaria Vaccine during 18 Months after Vaccination: A Phase 3 Randomized, Controlled Trial in Children and Young Infants at 11 African Sites

      research-article
      The RTS,S Clinical Trials Partnership (2014) *
      PLoS Medicine
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mary Hamel and colleagues in the RTS,S Clinical Trials Partnership report updated safety and efficacy results from an ongoing Phase 3 trial, including calculations of vaccine impact (malaria cases prevented).

          Please see later in the article for the Editors' Summary

          Abstract

          Background

          A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission.

          Methods and Findings

          6,537 infants aged 6–12 wk and 8,923 children aged 5–17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine.

          VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p<0.01 across all sites). VE during the 20 mo after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT).

          VE against clinical malaria in infants was 27% (95% CI 20% to 32%, per protocol; 27% [95% CI 21% to 33%], ITT), with no significant protection against severe malaria, malaria hospitalization, or all-cause hospitalization.

          Post-vaccination anti-circumsporozoite antibody geometric mean titer varied from 348 to 787 EU/ml across sites in children and from 117 to 335 EU/ml in infants (per protocol).

          VE waned over time in both age categories (Schoenfeld residuals p<0.001). The number of clinical and severe malaria cases averted per 1,000 children vaccinated ranged across sites from 37 to 2,365 and from −1 to 49, respectively; corresponding ranges among infants were −10 to 1,402 and −13 to 37, respectively (ITT). Meningitis was reported as a serious adverse event in 16/5,949 and 1/2,974 children and in 9/4,358 and 3/2,179 infants in the RTS,S/AS01 and control groups, respectively.

          Conclusions

          RTS,S/AS01 prevented many cases of clinical and severe malaria over the 18 mo after vaccine dose 3, with the highest impact in areas with the greatest malaria incidence. VE was higher in children than in infants, but even at modest levels of VE, the number of malaria cases averted was substantial. RTS,S/AS01 could be an important addition to current malaria control in Africa.

          Trial registration

          www.ClinicalTrials.gov NCT00866619

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Every year, more than 200 million cases of malaria occur worldwide, and more than 600,000 people, mainly children living in sub-Saharan Africa, die from this parasitic disease. Malaria parasites are transmitted to people through the bites of infected night-flying mosquitoes and cause fever that needs to be treated promptly with anti-malarial drugs to prevent anemia (a reduction in red blood cell numbers) and life-threatening organ damage. Malaria transmission can be prevented by using long-lasting insecticides sprayed on the indoor walls of homes to kill the mosquitoes that spread the malaria parasite or by sleeping under insecticide-treated nets to avoid mosquito bites and further reduce mosquito numbers. Widespread use of these preventative measures, together with the introduction of artemisinin combination therapy (an effective anti-malarial treatment), has reduced the global burden of malaria by 45% in all age groups, and by 51% among young children, since 2000.

          Why Was This Study Done?

          Unfortunately, the emergence of insecticide and drug resistance is threatening this advance in malaria control. Moreover, additional interventions—specifically, effective malaria vaccines—will be needed to eliminate malaria in the large areas of Africa where malaria transmission remains high. Currently, there is no licensed malaria vaccine, but RTS,S/AS01, the most advanced malaria vaccine candidate, is undergoing phase 3 clinical trials (the last stage of testing before licensing) in infants and children in seven African countries. The RTS,S Clinical Trials Partnership reported encouraging results on the efficacy and safety of RTS,S/AS01 during 12 months of follow-up in 2011 and 2012. Here, researchers report on the 18-month efficacy and safety of RTS,S/AS01. Vaccine efficacy (VE) is the reduction in the incidence of a disease (the number of new cases that occur in a population in a given period) among trial participants who receive the vaccine compared to the incidence among participants who do not receive the vaccine.

          What Did the Researchers Do and Find?

          The researchers randomly assigned 6,537 infants aged 6–12 weeks and 8,923 children aged 5–17 months to receive three doses of RTS,S/AS01 or a control vaccine. During 18 months of follow-up, there were 0.69 episodes of clinical malaria (a high temperature and parasites in the blood) per person-year among the children who received all the planned doses of RTS,S/AS01 (the “per protocol” population) and 1.17 episodes per person-year among the control children—a VE against clinical malaria in the per-protocol population of 46%. A similar VE was seen in an intention-to-treat analysis that included all the enrolled children, regardless of whether they received all of the planned vaccine doses; intention-to-treat analyses reflect the real-life situation—in which children sometimes miss vaccine doses—better than per-protocol analyses. In intention-to-treat analyses, the VE among children against severe malaria (fever, parasites in the blood, and symptoms such as anemia) and hospitalization for malaria was 34% and 41%, respectively. Among infants, the VE against clinical malaria was 27% in both per-protocol and intention-to-treat analyses; the vaccine showed no protection against severe malaria or hospitalization. In both infants and children, VE waned with time since vaccination. Across all the study sites, RTS,S/AS01 averted an average of 829 and 449 cases of clinical malaria per 1,000 children and infants vaccinated, respectively. Finally, the serious adverse event meningitis (inflammation of the tissues lining the brain and spinal cord) occurred more frequently in trial participants given RTS,S/AS01 than in those given the control vaccine, but the incidence of other serious adverse events was similar in both groups of participants.

          What Do These Findings Mean?

          These and other findings show that, during 18 months of follow-up, vaccination of children and young infants with RTS,S/AS01 prevented many cases of clinical and severe malaria and that the impact of vaccination was highest in regions with the highest incidence of malaria. They indicate, as in the earlier analysis, that the VE against clinical and severe malaria is higher in children than in young infants and suggest that protection wanes over time. Whether or not the vaccine played a causal role in the observed cases of meningitis cannot be determined from these results, and the occurrence of meningitis will be followed closely during the remainder of the trial. Other study limitations (for example, variations in the clinical characteristics of participants from one center to another) may also affect the accuracy of these findings and their interpretation. However, by showing that even a modest VE can avert a substantial number of malaria cases, these findings suggest that vaccination with RTS,S/AS01 could have a major public health impact in sub-Saharan Africa.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001685.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Insecticide-treated bed nets and curtains for preventing malaria.

          C Lengeler (2004)
          Malaria is an important cause of illness and death in many parts of the world, especially in sub-Saharan Africa. There has been a renewed emphasis on preventive measures at community and individual levels. Insecticide-treated nets (ITNs) are the most prominent malaria preventive measure for large-scale deployment in highly endemic areas. To assess the impact of insecticide-treated bed nets or curtains on mortality, malarial illness (life-threatening and mild), malaria parasitaemia, anaemia, and spleen rates. I searched the Cochrane Infectious Diseases Group trials register (January 2003), CENTRAL (The Cochrane Library, Issue 1, 2003), MEDLINE (1966 to October 2003), EMBASE (1974 to November 2002), LILACS (1982 to January 2003), and reference lists of reviews, books, and trials. I handsearched journals, contacted researchers, funding agencies, and net and insecticide manufacturers. Individual and cluster randomized controlled trials of insecticide-treated bed nets or curtains compared to nets without insecticide or no nets. Trials including only pregnant women were excluded. The reviewer and two independent assessors reviewed trials for inclusion. The reviewer assessed trial methodological quality and extracted and analysed data. Fourteen cluster randomized and eight individually randomized controlled trials met the inclusion criteria. Five trials measured child mortality: ITNs provided 17% protective efficacy (PE) compared to no nets (relative rate 0.83, 95% confidence interval (CI) 0.76 to 0.90), and 23% PE compared to untreated nets (relative rate 0.77, 95% CI 0.63 to 0.95). About 5.5 lives (95% CI 3.39 to 7.67) can be saved each year for every 1000 children protected with ITNs. In areas with stable malaria, ITNs reduced the incidence of uncomplicated malarial episodes in areas of stable malaria by 50% compared to no nets, and 39% compared to untreated nets; and in areas of unstable malaria: by 62% for compared to no nets and 43% compared to untreated nets for Plasmodium falciparum episodes, and by 52% compared to no nets and 11% compared to untreated nets for P. vivax episodes. When compared to no nets and in areas of stable malaria, ITNs also had an impact on severe malaria (45% PE, 95% CI 20 to 63), parasite prevalence (13% PE), high parasitaemia (29% PE), splenomegaly (30% PE), and their use improved the average haemoglobin level in children by 1.7% packed cell volume. ITNs are highly effective in reducing childhood mortality and morbidity from malaria. Widespread access to ITNs is currently being advocated by Roll Back Malaria, but universal deployment will require major financial, technical, and operational inputs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants.

            The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial. We administered RTS,S/AS01 or a comparator vaccine to 6537 infants who were 6 to 12 weeks of age at the time of the first vaccination in conjunction with Expanded Program on Immunization (EPI) vaccines in a three-dose monthly schedule. Vaccine efficacy against the first or only episode of clinical malaria during the 12 months after vaccination, a coprimary end point, was analyzed with the use of Cox regression. Vaccine efficacy against all malaria episodes, vaccine efficacy against severe malaria, safety, and immunogenicity were also assessed. The incidence of the first or only episode of clinical malaria in the intention-to-treat population during the 14 months after the first dose of vaccine was 0.31 per person-year in the RTS,S/AS01 group and 0.40 per person-year in the control group, for a vaccine efficacy of 30.1% (95% confidence interval [CI], 23.6 to 36.1). Vaccine efficacy in the per-protocol population was 31.3% (97.5% CI, 23.6 to 38.3). Vaccine efficacy against severe malaria was 26.0% (95% CI, -7.4 to 48.6) in the intention-to-treat population and 36.6% (95% CI, 4.6 to 57.7) in the per-protocol population. Serious adverse events occurred with a similar frequency in the two study groups. One month after administration of the third dose of RTS,S/AS01, 99.7% of children were positive for anti-circumsporozoite antibodies, with a geometric mean titer of 209 EU per milliliter (95% CI, 197 to 222). The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age.

              Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT00380393.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                July 2014
                29 July 2014
                : 11
                : 7
                : e1001685
                Affiliations
                St. George's, University of London, United Kingdom
                Author notes
                * E-mail: mhamel@ 123456cdc.gov (corresponding author: Mary J. Hamel)

                ¶ Membership of the RTS,S Clinical Trials Partnership is provided in the Acknowledgments.

                The trial was sponsored by GlaxoSmithKline Biologicals SA (GSK), the vaccine developer and manufacturer, and funded by both GSK Biologicals SA and the PATH Malaria Vaccine Initiative (MVI). All centers declare receiving a grant from MVI for running the trial. Author travel and accommodation related to this trial were financed by MVI. GlaxoSmithKline Biologicals SA received a grant from MVI to run the trial. MVI received a grant from the Bill & Melinda Gates Foundation to run this trial and to compensate MVI authors for trial-related travel. Additional conflicts of interest are as follows: JJA and PAl declare that their institutions received grant from the Catalan government and from the International Agency for Development and Cooperation. NA, CO, and KO declare that their institutions received a grant from the Malaria Clinical Trial Alliance. PB, SD, BG, CK, PL, CMai, GMwam, BO, and LO declare that their institution has received grants from MVI for other malaria studies. KM declares that his institution received a grant from the Wellcome Trust and that he received support from USAID and the Bill & Melinda Gates Foundation to participate in a scientific advisory group on malaria. MML declares that she received non-financial support from the WHO and the Biomérieux Foundation. PN declares that she received financial support from GSK to present the results of the study at ASTMH congress in 2012. LO declares that he received support from GSK to carry out clinical and epidemiological studies. JSa has received (for the Center) some GlaxoSmithKline group of companies' consultancy fees for other studies. MTa is a board member of the Optimus Foundation, and his institution is reimbursed for his activities on the scientific advisory board of the Novartis Institute for Tropical Diseases. He also has received for his institution other grants from MVI and from the Bill & Melinda Gates Foundation, and travel reimbursements from MVI and Sanaria corp. All GSK Vaccines authors are, or were at the time of the study, employed by the GlaxoSmithKline group of companies. JC now works as an independent consultant for GSK Vaccines. WRB, JC, EJ, DLa, OOA, JV, AL, and MLi have shares/stock options in the GlaxoSmithKline group of companies. JC and WRB declare that they are named inventors on patents for which the rights have been assigned to GlaxoSmithKline group of companies. DK, DLe, and BS are employees at PATH-MVI. DSc is employed by the London School of Hygiene & Tropical Medicine, and his consultancy activities for MVI are funded as a grant to the LSHTM by MVI. DK holds stock or stock options from Merck, Sharpe & Dome.

                Conceived and designed the experiments: SAb TA STA DA JJA KPA WRB PB UDA SGe BG MJH IH SK PGK DLa AL BL MLe MLi JL EM KM FM PN OOA AOli LO WO SOA JSa BS LS MTa HT JV. Performed the experiments: OA SAb BPA AAA EA GA SAd TA STA AA PAi PAk PAl DA KPA NA AB JB PB OB HB DC CC RC ED SD DD CD JFF SGe JG SGo MJH SI EJ OAJ ALK PK SK KK CK JK PGK MLa KFL BL MLe EL PL JL OL EM LM CMah CMai AM SM KM FM MML CMav JM BM ATM PM VMK TM GMwam GMwan AN PN RN JOc CO BO AOlo JOm MO IO AOt KO LO WO NO JBO SOA HOB JOy TR JSa NS DSa AS SS HS JSy GT TT TGT HT OT MTs IV AKY. Analyzed the data: SAb SAd STA PAi JJA KPA JB JC SGe BG YG MJH IH EJ SK DK PGK DLa AL DLe MLi JL FM PN BO AOli AOlo MO LO WO SOA JSa BS DSc HS MTa HT JV. Wrote the first draft of the manuscript: SAb JJA BG MJH AL DLe MLi JL PN AOli LO DSc MTa JV. Contributed to the writing of the manuscript: SAb JJA BG MJH AL DLe MLi JL PN AOli LO DSc MTa JV. ICMJE criteria for authorship read and met: OA SAb BPA AAA EA GA SAd TA STA AA PAi PAk PAl DA JJA KPA NA WRB AB JB PB OB HB DC CC RC JC UDA ED SD DD CD JFF SGe JG SGo BG YG MJH IH SI EJ OAJ ALK PK SK DK KK CK JK PGK MLa DLa KFL AL DLe BL MLe MLi EL PL JL OL EM LM CMah CMai AM SM KM FM MML CMav JM BM ATM PM VMK TM GMwam GMwan AN PN RN JOc CO OOA BO AOli AOlo JOm MO IO AOt KO LO WO NO JBO SOA HOB JOy TR JSa NS DSa AS BS DSc SS LS HS JSy MTa GT TT TGT HT OT MTs IV JV AKY. Agree with manuscript results and conclusions: OA SAb BPA AAA EA GA SAd TA STA AA PAi PAk PAl DA JJA KPA NA WRB AB JB PB OB HB DC CC RC JC UDA ED SD DD CD JFF SGe JG SGo BG YG MJH IH SI EJ OAJ ALK PK SK DK KK CK JK PGK MLa DLa KFL AL DLe BL MLe MLi EL PL JL OL EM LM CMah CMai AM SM KM FM MML CMav JM BM ATM PM VMK TM GMwam GMwan AN PN RN JOc CO OOA BO AOli AOlo JOm MO IO AOt KO LO WO NO JBO SOA HOB JOy TR JSa NS DSa AS BS DSc SS LS HS JSy MTa GT TT TGT HT OT MTs IV JV AKY. Enrolled patients: OA SAb BPA AAA EA GA SAd TA STA AA PAi PAk PAl DA KPA NA AB JB PB OB HB DC CC RC ED SD DD CD JFF SGe JG SGo MJH SI EJ OAJ ALK PK SK KK CK JK PGK MLa KFL BL MLe EL PL JL OL EM LM CMah CMai AM SM KM FM MML CMav JM BM ATM PM VMK TM GMwam GMwan AN PN RN JOc CO BO AOlo JOm MO IO AOt KO LO WO NO JBO SOA HOB JOy TR JSa NS DSa AS SS HS JSy GT TT TGT HT OT MTs IV AKY. Developed the analysis plan for the data: JJA MLi. Vouch for the data and analysis: JJA MLi.

                Article
                PMEDICINE-D-13-03100
                10.1371/journal.pmed.1001685
                4114488
                25072396
                0801bf4f-4ef4-4c87-9f07-80f7a00ed368
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 25 September 2013
                : 18 June 2014
                Page count
                Pages: 24
                Funding
                The study is sponsored by GSK Biologicals SA, the vaccine developer and manufacturer, and funded by both GSK Biologicals SA and the PATH Malaria Vaccine Initiative (MVI). The study was designed by the Clinical Trials Partnership Committee (CTPC), consisting of representatives of all research sites, study sponsor and study funders (as detailed in Leach et al. 2011 [18]). All authors were involved in data collection. All data were analyzed following a pre-defined analysis plan. The CTPC had full access to the study data, made the decision to publish the manuscript in its current form, and prepared the manuscript. The findings and conclusions in this article are those of the authors. They do not necessarily represent the views of the Centers for Disease Control and Prevention (CDC).
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Vaccine Development
                Vaccines
                Clinical Immunology
                Immunity
                Medicine and Health Sciences
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Tropical Diseases
                Custom metadata
                The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. The data are located at GSK. GSK and all coinvestigators remain blinded. External statisticians run the analyses. Trial is ongoing.

                Medicine
                Medicine

                Comments

                Comment on this article