3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory T Cells

      , , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota and its derived metabolites greatly impact the host immune system, both innate and adaptive responses. Gut dysbiosis and altered levels of microbiota-derived metabolites have been described in several immune-related and immune-mediated diseases such as intestinal bowel disease, multiple sclerosis, or colorectal cancer. Gut microbial-derived metabolites are synthesized from dietary compounds ingested by the host or host-produced metabolites, and additionally, some bacterial products can be synthesized de novo. In this review, we focus on the two first metabolites families including short-chain fatty acids, indole metabolites, polyamines, choline-derived compounds, and secondary bile acids. They all have been described as immunoregulatory molecules that specifically affect the adaptive immune system and T helper 17 and regulatory T cells. We discuss the mechanisms of action and the consequences in health and diseases related to these gut microbial-derived metabolites. Finally, we propose that the exogenous administration of these molecules or other compounds that bind to their immunoregulatory receptors in a homologous manner could be considered therapeutic approaches.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.

          Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

            Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation

              Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T (Treg) cells expressing transcription factor Foxp3 play a key role in limiting inflammatory responses in the intestine 1 . Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory Th17 cells 2-6 , the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we hypothesized that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We found that a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg cell numbers upon provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells as the observed phenomenon was dependent upon intronic enhancer CNS1, essential for extrathymic, but dispensable for thymic Treg cell differentiation 1, 7 . In addition to butyrate, de novo Treg cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of HDAC inhibition, but not acetate, lacking this activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                January 2023
                January 16 2023
                : 24
                : 2
                : 1806
                Article
                10.3390/ijms24021806
                36675320
                08027236-d890-4c1a-8a57-18f2921b876e
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article