5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The good and the bad: using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          C reactive protein (CRP), a marker for the presence of an inflammatory process, is the most extensively studied marker for distinguishing bacterial from non-bacterial infections in febrile patients. A point-of-care test for bacterial infections would be of particular use in low-resource settings where other laboratory diagnostics are not always available, antimicrobial resistance rates are high and bacterial infections such as pneumonia are a leading cause of death. This document summarises evidence on CRP testing for bacterial infections in low-income and middle-income countries (LMICs). With a push for universal health coverage and prevention of antimicrobial resistance, it is important to understand if CRP might be able to do the job. The use of CRP polarised the global health community and the aim of this document is to summarise the ‘good and the bad’ of CRP in multiple settings in LMICs. In brief, the literature that was reviewed suggests that CRP testing may be beneficial in low-resource settings to improve rational antibiotic use for febrile patients, but the positive predictive value is insufficient to allow it to be used alone as a single tool. CRP testing may be best used as part of a panel of diagnostic tests and algorithms. Further studies in low-resource settings, particularly with regard to impact on antibiotic prescribing and cost-effectiveness of CRP testing, are warranted.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Biomarkers as point-of-care tests to guide prescription of antibiotics in patients with acute respiratory infections in primary care.

          Background Acute respiratory infections (ARIs) are by far the most common reason for prescribing an antibiotic in primary care, even though the majority of ARIs are of viral or non-severe bacterial aetiology. Unnecessary antibiotic use will, in many cases, not be beneficial to the patients' recovery and expose them to potential side effects. Furthermore, as a causal link exists between antibiotic use and antibiotic resistance, reducing unnecessary antibiotic use is a key factor in controlling this important problem. Antibiotic resistance puts increasing burdens on healthcare services and renders patients at risk of future ineffective treatments, in turn increasing morbidity and mortality from infectious diseases. One strategy aiming to reduce antibiotic use in primary care is the guidance of antibiotic treatment by use of a point-of-care biomarker. A point-of-care biomarker of infection forms part of the acute phase response to acute tissue injury regardless of the aetiology (infection, trauma and inflammation) and may in the correct clinical context be used as a surrogate marker of infection,possibly assisting the doctor in the clinical management of ARIs.Objectives To assess the benefits and harms of point-of-care biomarker tests of infection to guide antibiotic treatment in patients presenting with symptoms of acute respiratory infections in primary care settings regardless of age.Search methods We searched CENTRAL (2013, Issue 12), MEDLINE (1946 to January 2014), EMBASE (2010 to January 2014), CINAHL (1981 to January 2014), Web of Science (1955 to January 2014) and LILACS (1982 to January 2014).Selection criteria We included randomised controlled trials (RCTs) in primary care patients with ARIs that compared use of point-of-care biomarkers with standard of care. We included trials that randomised individual patients as well as trials that randomised clusters of patients(cluster-RCTs).Two review authors independently extracted data on the following outcomes: i) impact on antibiotic use; ii) duration of and recovery from infection; iii) complications including the number of re-consultations, hospitalisations and mortality; iv) patient satisfaction. We assessed the risk of bias of all included trials and applied GRADE. We used random-effects meta-analyses when feasible. We further analysed results with a high level of heterogeneity in pre-specified subgroups of individually and cluster-RCTs.Main results The only point-of-care biomarker of infection currently available to primary care identified in this review was C-reactive protein. We included six trials (3284 participants; 139 children) that evaluated a C-reactive protein point-of-care test. The available information was from trials with a low to moderate risk of bias that address the main objectives of this review.Overall a reduction in the use of antibiotic treatments was found in the C-reactive protein group (631/1685) versus standard of care(785/1599). However, the high level of heterogeneity and the statistically significant test for subgroup differences between the three RCTs and three cluster-RCTs suggest that the results of the meta-analysis on antibiotic use should be interpreted with caution and the pooled effect estimate (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.66 to 0.92; I2 statistic = 68%) may not be meaningful.The observed heterogeneity disappeared in our pre planned subgroup analysis based on study design: RR 0.90, 95% CI 0.80 to 1.02; I2 statistic = 5% for RCTs and RR 0.68, 95% CI 0.61 to 0.75; I2 statistic = 0% for cluster-RCTs, suggesting that this was the cause of the observed heterogeneity.There was no difference between using a C-reactive protein point-of-care test and standard care in clinical recovery (defined as at least substantial improvement at day 7 and 28 or need for re-consultations day 28). However, we noted an increase in hospitalisations in the C-reactive protein group in one study, but this was based on few events and may be a chance finding. No deaths were reported in any of the included studies.We classified the quality of the evidence as moderate according to GRADE due to imprecision of the main effect estimate.Authors' conclusions A point-of-care biomarker (e.g. C-reactive protein) to guide antibiotic treatment of ARIs in primary care can reduce antibiotic use,although the degree of reduction remains uncertain. Used as an adjunct to a doctor's clinical examination this reduction in antibiotic use did not affect patient-reported outcomes, including recovery from and duration of illness.However, a possible increase in hospitalisations is of concern. A more precise effect estimate is needed to assess the costs of the intervention and compare the use of a point-of-care biomarker to other antibiotic-saving strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial

            Summary Background Inappropriate antibiotic use for acute respiratory tract infections is common in primary health care, but distinguishing serious from self-limiting infections is difficult, particularly in low-resource settings. We assessed whether C-reactive protein point-of-care testing can safely reduce antibiotic use in patients with non-severe acute respiratory tract infections in Vietnam. Method We did a multicentre open-label randomised controlled trial in ten primary health-care centres in northern Vietnam. Patients aged 1–65 years with at least one focal and one systemic symptom of acute respiratory tract infection were assigned 1:1 to receive either C-reactive protein point-of-care testing or routine care, following which antibiotic prescribing decisions were made. Patients with severe acute respiratory tract infection were excluded. Enrolled patients were reassessed on day 3, 4, or 5, and on day 14 a structured telephone interview was done blind to the intervention. Randomised assignments were concealed from prescribers and patients but not masked as the test result was used to assist treatment decisions. The primary outcome was antibiotic use within 14 days of follow-up. All analyses were prespecified in the protocol and the statistical analysis plan. All analyses were done on the intention-to-treat population and the analysis of the primary endpoint was repeated in the per-protocol population. This trial is registered under number NCT01918579. Findings Between March 17, 2014, and July 3, 2015, 2037 patients (1028 children and 1009 adults) were enrolled and randomised. One adult patient withdrew immediately after randomisation. 1017 patients were assigned to receive C-reactive protein point-of-care testing, and 1019 patients were assigned to receive routine care. 115 patients in the C-reactive protein point-of-care group and 72 patients in the routine care group were excluded in the intention-to-treat analysis due to missing primary endpoint. The number of patients who used antibiotics within 14 days was 581 (64%) of 902 patients in the C-reactive protein group versus 738 (78%) of 947 patients in the control group (odds ratio [OR] 0·49, 95% CI 0·40–0·61; p<0·0001). Highly significant differences were seen in both children and adults, with substantial heterogeneity of the intervention effect across the 10 sites (I 2=84%, 95% CI 66–96). 140 patients in the C-reactive protein group and 137 patients in the routine care group missed the urine test on day 3, 4, or 5. Antibiotic activity in urine on day 3, 4, or 5 was found in 267 (30%) of 877 patients in the C-reactive protein group versus 314 (36%) of 882 patients in the routine treatment group (OR 0·78, 95% CI 0·63–0·95; p=0·015). Time to resolution of symptoms was similar in both groups. Adverse events were rare, with no deaths and a total of 14 hospital admissions (six in the C-reactive protein group and eight in the control group). Interpretation C-reactive protein point-of-care testing reduced antibiotic use for non-severe acute respiratory tract infection without compromising patients' recovery in primary health care in Vietnam. Health-care providers might have become familiar with the clinical picture of low C-reactive protein, leading to reduction in antibiotic prescribing in both groups, but this would have led to a reduction in observed effect, rather than overestimation. Qualitative analysis is needed to address differences in context in order to implement this strategy to improve rational antibiotic use for patients with acute respiratory infection in low-income and middle-income countries. Funding Wellcome Trust, UK, and Global Antibiotic Resistance Partnership, USA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use

              Background Antimicrobial resistance (AMR) poses a colossal threat to global health and incurs high economic costs to society. Economic evaluations of antimicrobials and interventions such as diagnostics and vaccines that affect their consumption rarely include the costs of AMR, resulting in sub-optimal policy recommendations. We estimate the economic cost of AMR per antibiotic consumed, stratified by drug class and national income level. Methods The model is comprised of three components: correlation coefficients between human antibiotic consumption and subsequent resistance; the economic costs of AMR for five key pathogens; and consumption data for antibiotic classes driving resistance in these organisms. These were used to calculate the economic cost of AMR per antibiotic consumed for different drug classes, using data from Thailand and the United States (US) to represent low/middle and high-income countries. Results The correlation coefficients between consumption of antibiotics that drive resistance in S. aureus, E. coli, K. pneumoniae, A. baumanii, and P. aeruginosa and resistance rates were 0.37, 0.27, 0.35, 0.45, and 0.52, respectively. The total economic cost of AMR due to resistance in these five pathogens was $0.5 billion and $2.9 billion in Thailand and the US, respectively. The cost of AMR associated with the consumption of one standard unit (SU) of antibiotics ranged from $0.1 for macrolides to $0.7 for quinolones, cephalosporins and broad-spectrum penicillins in the Thai context. In the US context, the cost of AMR per SU of antibiotic consumed ranged from $0.1 for carbapenems to $0.6 for quinolones, cephalosporins and broad spectrum penicillins. Conclusion The economic costs of AMR per antibiotic consumed were considerable, often exceeding their purchase cost. Differences between Thailand and the US were apparent, corresponding with variation in the overall burden of AMR and relative prevalence of different pathogens. Notwithstanding their limitations, use of these estimates in economic evaluations can make better-informed policy recommendations regarding interventions that affect antimicrobial consumption and those aimed specifically at reducing the burden of AMR. Electronic supplementary material The online version of this article (10.1186/s13756-018-0384-3) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                BMJ Glob Health
                BMJ Glob Health
                bmjgh
                bmjgh
                BMJ Global Health
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2059-7908
                2020
                27 May 2020
                : 5
                : 5
                : e002396
                Affiliations
                [1 ]Foundation for Innovative New Diagnostics (FIND) , Geneva, Switzerland
                [2 ]departmentNuffield Department of Medicine , University of Oxford , Oxford, UK
                Author notes
                [Correspondence to ] Dr Sabine Dittrich; sabine.dittrich@ 123456finddx.org
                Author information
                http://orcid.org/0000-0002-4522-2788
                Article
                bmjgh-2020-002396
                10.1136/bmjgh-2020-002396
                7259834
                32467355
                080939a5-032a-4401-bdf3-ae14cc053188
                © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 11 February 2020
                : 14 April 2020
                : 17 April 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000278, Department for International Development;
                Categories
                Analysis
                1506
                Custom metadata
                unlocked

                diagnostics and tools,public health,treatment,pneumonia
                diagnostics and tools, public health, treatment, pneumonia

                Comments

                Comment on this article