4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sharp tipped plastic hollow microneedle array by microinjection moulding

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique.

          Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries. A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised. Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 μm and 900 μm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 μm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 μm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted. In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dissolving microneedle patch for transdermal delivery of human growth hormone.

            The clinical impact of biotechnology has been constrained by the limitations of traditional hypodermic injection of biopharmaceuticals. Microneedle patches have been proposed as a minimally invasive alternative. In this study, the translation of a dissolving microneedle patch designed for simple, painless self-administration of biopharmacetucials that generates no sharp biohazardous waste is assessed. To study the pharmacokinetics and safety of this approach, human growth hormone (hGH) was encapsulated in 600 μm-long dissolving microneedles composed of carboxymethylcellulose and trehalose using an aqueous, moderate-temperature process that maintained complete hGH activity after encapsulation and retained most activity after storage for up to 15 months at room temperature and humidity. After manual insertion into the skin of hairless rats, hGH pharmacokinetics were similar to conventional subcutaneous injection. After patch removal, the microneedles had almost completely dissolved, leaving behind only blunt stubs. The dissolving microneedle patch was well tolerated, causing only slight, transient erythema. This study suggests that a dissolving microneedle patch can deliver hGH and other biopharmaceuticals in a manner suitable for self-administration without sharp biohazardous waste. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Penetration-Enhanced Ultrasharp Microneedles and Prediction on Skin Interaction for Efficient Transdermal Drug Delivery

                Bookmark

                Author and article information

                Journal
                Journal of Micromechanics and Microengineering
                J. Micromech. Microeng.
                IOP Publishing
                0960-1317
                1361-6439
                January 01 2012
                January 01 2012
                December 23 2011
                : 22
                : 1
                : 015016
                Article
                10.1088/0960-1317/22/1/015016
                080d4274-c51e-4803-b8bb-ff0122e9a576
                © 2011
                History

                Comments

                Comment on this article