0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulation of Small Ubiquitin-Like Modifier 2 and Protein SUMOylation as a Cardioprotective Mechanism Against Myocardial Ischemia-Reperfusion Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Small ubiquitin-like modifier (SUMO) proteins modify proteins through SUMOylation as an essential protein post-translational modification (PTM) for regulating redox status, inflammation, and cardiac fibrosis in myocardial infarction. This study aimed to investigate whether natural product puerarin could alleviate myocardial ischemia/reperfusion injury (MI-RI) by targeting protein SUMOylation.

          Methods: Mouse MI-RI model was induced by ligating the left anterior descending (LAD) coronary artery and subsequently treated with puerarin at the dose of 100 mg/kg. Rat cardiomyocyte H9c2 cells were challenged by hypoxia/reoxygenation and treated with puerarin at concentrations of 10, 20, and 40 μM. The infarction area of mouse hearts was assessed by 2% TTC staining. Cell damage was analyzed for the release of lactate dehydrogenase (LDH) in serum and cell culture medium. Western blot technique was employed to detect the expression of SUMO2, phospho-ERK, pro-inflammatory biomarker COX2, fibrosis index galectin-3, apoptosis-related protein cleaved PARP-1. The activation of the estrogen receptor (ER) pathway was assayed by the dual-luciferase reporter system.

          Results: The present study validated that puerarin effectively reduced myocardial infarct size and LDH release in the mouse MI-RI model. In the cell culture system, puerarin effectively decreased the release of LDH and the protein level of COX2, galectin-3, and cleaved PARP-1. Mechanistic studies revealed that puerarin increased the expression of SUMO2, SUMOylation of proteins and the activation of ER/ERK pathway in cardiomyocytes. ER, ERK and SUMO2 inhibitors attenuated the cardioprotective effects of puerarin.

          Conclusion: Puerarin may alleviate myocardial injury by promoting protein SUMOylation through ER/ERK/SUMO2-dependent mechanism.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: found
          • Article: not found

          AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

           Oleg Trott,  Jay Olson (2010)
          AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. Copyright 2009 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NLRP3 inflammasome in acute myocardial infarction

            The heart is extremely sensitive to ischaemic injury. During an acute myocardial infarction (AMI) event, the injury is initially caused by reduced blood supply to the tissues, which is then further exacerbated by an intense and highly specific inflammatory response that occurs during reperfusion. Numerous studies have highlighted the central role of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in this process. The inflammasome, an integral part of the innate immune system, is a macromolecular protein complex that finely regulates the activation of caspase 1 and the production and secretion of powerful pro-inflammatory cytokines such as IL-1β and IL-18. In this Review, we summarize evidence supporting the therapeutic value of NLRP3 inflammasome-targeted strategies in experimental models, and the data supporting the role of the NLRP3 inflammasome in AMI and its consequences on adverse cardiac remodelling, cytokine-mediated systolic dysfunction, and heart failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Concepts in sumoylation: a decade on.

              A decade has passed since SUMO (small ubiquitin-related modifier) was discovered to be a reversible post-translational protein modifier. During this time many enzymes that participate in regulated SUMO-conjugation and -deconjugation pathways have been identified and characterized. In parallel, the search for SUMO substrates has produced a long list of targets, which appear to be involved in most cellular functions. Sumoylation is a highly dynamic process and its outcomes are extremely diverse, ranging from changes in localization to altered activity and, in some cases, stability of the modified protein. At first glance, these effects have nothing in common; however, it seems that they all result from changes in the molecular interactions of the sumoylated proteins.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                13 September 2021
                2021
                : 12
                Affiliations
                [ 1 ]School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
                [ 2 ]Zhujiang Hospital, Southern Medical University, Guangzhou, China
                [ 3 ]Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
                Author notes

                Edited by: Francesco Rossi, University of Campania Luigi Vanvitelli, Italy

                Reviewed by: Tamer M. A. Mohamed, University of Louisville, United States

                Mahmood Khan, The Ohio State University, United States

                *Correspondence: Jianhui Rong, jrong@ 123456hku.hk

                This article was submitted to Cardiovascular and Smooth Muscle Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                731980
                10.3389/fphar.2021.731980
                8473707
                34588985
                08190cd2-13a8-48d9-a32b-4bfbca9afb8d
                Copyright © 2021 Zhao, Zhao, Zhang, Fan and Rong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Categories
                Pharmacology
                Original Research

                Comments

                Comment on this article