+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Toll-Like Receptors 2 and 4 in the Pathogenesis of Chronic Obstructive Pulmonary Disease

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Currently, chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. The determination of immune mechanisms of inflammation in the disease presents an important challenge for fundamental medical research. According to modern views, Toll-like receptors (TLRs), among which TLR2 and TLR4 play a key role, are one of the essential components of inflammatory process in COPD. This review focuses on following aspects: the role of TLR2 and TLR4 in the initiation of inflammatory process in COPD; the mechanisms of influence of various exogenous factors (cigarette smoke, suspended particulate matter, and bacteria) on the expression of TLR2 and TLR4; the contribution of these TLRs to the T-helper (Th) immune response development in COPD, in particular to the Th17 immune response, which contributes to the progression of the disease and therapeutic implications of TLR2 and TLR4 in COPD.

          Related collections

          Most cited references 80

          • Record: found
          • Abstract: found
          • Article: not found

          New insights into the immunology of chronic obstructive pulmonary disease.

          Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome associated with abnormal inflammatory immune responses of the lung to noxious particles and gases. Cigarette smoke activates innate immune cells such as epithelial cells and macrophages by triggering pattern recognition receptors, either directly or indirectly via the release of damage-associated molecular patterns from stressed or dying cells. Activated dendritic cells induce adaptive immune responses encompassing T helper (Th1 and Th17) CD4+ T cells, CD8+ cytotoxicity, and B-cell responses, which lead to the development of lymphoid follicles on chronic inflammation. Viral and bacterial infections not only cause acute exacerbations of COPD, but also amplify and perpetuate chronic inflammation in stable COPD via pathogen-associated molecular patterns. We discuss the role of autoimmunity (autoantibodies), remodelling, extracellular matrix-derived fragments, impaired innate lung defences, oxidative stress, hypoxia, and dysregulation of microRNAs in the persistence of the pulmonary inflammation despite smoking cessation. Copyright © 2011 Elsevier Ltd. All rights reserved.
            • Record: found
            • Abstract: not found
            • Article: not found

            Synthetic Nanoparticles for Vaccines and Immunotherapy.

              • Record: found
              • Abstract: found
              • Article: not found

              Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway

              Activation of the Toll-like receptor 4 (TLR4) complex, a receptor of the innate immune system, may underpin the pathophysiology of many human diseases, including asthma, cardiovascular disorder, diabetes, obesity, metabolic syndrome, autoimmune disorders, neuroinflammatory disorders, schizophrenia, bipolar disorder, autism, clinical depression, chronic fatigue syndrome, alcohol abuse, and toluene inhalation. TLRs are pattern recognition receptors that recognize damage-associated molecular patterns and pathogen-associated molecular patterns, including lipopolysaccharide (LPS) from gram-negative bacteria. Here we focus on the environmental factors, which are known to trigger TLR4, e.g., ozone, atmosphere particulate matter, long-lived reactive oxygen intermediate, pentachlorophenol, ionizing radiation, and toluene. Activation of the TLR4 pathways may cause chronic inflammation and increased production of reactive oxygen and nitrogen species (ROS/RNS) and oxidative and nitrosative stress and therefore TLR-related diseases. This implies that drugs or substances that modify these pathways may prevent or improve the abovementioned diseases. Here we review some of the most promising drugs and agents that have the potential to attenuate TLR-mediated inflammation, e.g., anti-LPS strategies that aim to neutralize LPS (synthetic anti-LPS peptides and recombinant factor C) and TLR4/MyD88 antagonists, including eritoran, CyP, EM-163, epigallocatechin-3-gallate, 6-shogaol, cinnamon extract, N-acetylcysteine, melatonin, and molecular hydrogen. The authors posit that activation of the TLR radical (ROS/RNS) cycle is a common pathway underpinning many “civilization” disorders and that targeting the TLR radical cycle may be an effective method to treat many inflammatory disorders.

                Author and article information

                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of Chronic Obstructive Pulmonary Disease
                23 June 2020
                : 15
                : 1481-1493
                [1 ]Vladivostok Branch of Federal State Budgetary Science Institution “Far Eastern Scientific Center of Physiology and Pathology of Respiration” – Institute of Medical Climatology and Rehabilitative Treatment , Vladivostok, Russia
                Author notes
                Correspondence: Karolina Sidletskaya Vladivostok Branch of Federal State Budgetary Science Institution “Far Eastern Scientific Center of Physiology and Pathology of Respiration” – Institute of Medical Climatology and Rehabilitative Treatment ,Russian street 73-g,Vladivostok690105, Russia Email
                © 2020 Sidletskaya et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (

                Page count
                Figures: 1, Tables: 3, References: 87, Pages: 13


                Comment on this article