27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dispersing misconceptions and identifying opportunities for the use of 'omics' in soil microbial ecology.

      1
      Nature reviews. Microbiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Technological advances are enabling the sequencing of environmental DNA and RNA at increasing depth and with decreasing costs. Metagenomic and transcriptomic analysis of soil microbial communities and the assembly of 'population genomes' from soil DNA are therefore now feasible. Although the value of such 'omic' approaches is limited by the associated technical and bioinformatic difficulties, even if these obstacles were eliminated and 'perfect' metagenomes and metatranscriptomes were available, important conceptual challenges remain. This Opinion article considers these conceptual challenges in the context of the current use of omics in soil microbiology, but the main arguments presented are also relevant to the application of omics to marine, freshwater, gut or other environments.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Microbial control over carbon cycling in soil

          A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically “narrow” processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the “broad” processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up – not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil – is it sequestered or not?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses.

            Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the 'active' fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population's growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations. This report highlights the complex and often contradictory relationships between rRNA, growth and activity. Potential mechanisms for confounding rRNA patterns are discussed, including differences in life histories, life strategies and non-growth activities. Ways in which rRNA data can be used for useful characterization of microbial assemblages are presented, along with questions to be addressed in future studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computational improvements reveal great bacterial diversity and high metal toxicity in soil.

              The complexity of soil bacterial communities has thus far confounded effective measurement. However, with improved analytical methods, we show that the abundance distribution and total diversity can be deciphered. Reanalysis of reassociation kinetics for bacterial community DNA from pristine and metal-polluted soils showed that a power law best described the abundance distributions. More than one million distinct genomes occurred in the pristine soil, exceeding previous estimates by two orders of magnitude. Metal pollution reduced diversity more than 99.9%, revealing the highly toxic effect of metal contamination, especially for rare taxa.
                Bookmark

                Author and article information

                Journal
                Nat. Rev. Microbiol.
                Nature reviews. Microbiology
                1740-1534
                1740-1526
                Jul 2015
                : 13
                : 7
                Affiliations
                [1 ] Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK.
                Article
                nrmicro3468
                10.1038/nrmicro3468
                26052662
                0827c5f0-4754-4b8b-8f09-3e87e64276ae
                History

                Comments

                Comment on this article