+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties.

          Materials and methods

          CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot.


          Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin.


          Together, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action.

          ART and its derivatives, clinically used antimalarial agents, have recently shown antitumor activities. However, the mechanisms underlying these activities remain unclear. This study was designed to determine their antitumor efficacy and underlying mechanisms of action in human hepatoma cells. The in vitro cytotoxicities of ART, DHA, artemether, and artesunate were compared in human hepatoma cells, HepG2 (p53 wild-type), Huh-7 and BEL-7404 (p53 mutant), and Hep3B (p53 null), and a normal human liver cell line, 7702. Based on their activity and specificity, ART and DHA were further investigated for their in vitro and in vivo antitumor effects and their effects on the protein expression of genes associated with cell proliferation and apoptosis. ART and DHA exerted the greatest cytotoxicity to hepatoma cells but significantly lower cytotoxicity to normal liver cells. The compounds inhibited cell proliferation, induced G(1)-phase arrest, decreased the levels of cyclin D1, cyclin E, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2F1, and increased the levels of Cip1/p21 and Kip1/p27. They induced apoptosis, activated caspase-3, increased the Bax/Bcl-2 ratio and poly(ADP-ribose) polymerase, and down-regulated MDM2. In mice bearing HepG2 and Hep3B xenograft tumors, ART and DHA inhibited tumor growth and modulated tumor gene expression consistent with in vitro observations. DHA increased the efficacy of the chemotherapeutic agent gemcitabine. ART and DHA have significant anticancer effects against human hepatoma cells, regardless of p53 status, with minimal effects on normal cells, indicating that they are promising therapeutics for human hepatoma used alone or in combination with other therapies.
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas.

            Glioblastoma is a devastating primary brain tumor resistant to conventional therapies. In this study, we tested the efficacy of combining temozolomide with curcumin, a phytochemical known to inhibit glioblastoma growth, and investigated the mechanisms involved. The data showed that synergy between curcumin and temozolomide was not achieved due to redundant mechanisms that lead to activating protective autophagy both in vitro and in vivo. Autophagy preceded apoptosis, and blocking this response with autophagy inhibitors (3-methyl-adenine, ATG7 siRNA and chloroquine) rendered cells susceptible to temozolomide and curcumin alone or combinations by increasing apoptosis. While curcumin inhibited STAT3, NFκB and PI3K/Akt to affect survival, temozolomide-induced autophagy relied on the DNA damage response and repair components ATM and MSH6, as well as p38 and JNK1/2. However, the most interesting observation was that both temozolomide and curcumin required ERK1/2 to induce autophagy. Blocking this ERK1/2-mediated temozolomide and curcumin induced autophagy with resveratrol, a blood-brain barrier permeable drug, improved temozolomide/curcumin efficacy in brain-implanted tumors. Overall, the data presented demonstrate that autophagy impairs the efficacy of temozolomide/curcumin, and inhibiting this phenomenon could provide novel opportunities to improve brain tumor treatment.
              • Record: found
              • Abstract: found
              • Article: not found

              Iron regulatory proteins and their role in controlling iron metabolism.

               Lukas C Kühn (2015)
              Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                14 February 2017
                : 11
                : 431-439
                [1 ]Department of Urology, Tongji Hospital
                [2 ]Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
                Author notes
                Correspondence: Zhihua Wang, Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, People’s Republic of China, Tel +86 27 8366 5308, Fax +86 27 8366 5368, Email zhwang_hust@ 123456hotmail.com

                These authors contributed equally to this work

                © 2017 Yang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article