27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins.

          Description

          We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform.

          Conclusion

          Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus . The database will be updated regularly with new genomes when they become available. The Alternaria genomes database is freely available for non-profit use at http://alternaria.vbi.vt.edu.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ensembl 2012

            The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of novel transcripts in annotated genomes using RNA-Seq.

              We describe a new 'reference annotation based transcript assembly' problem for RNA-Seq data that involves assembling novel transcripts in the context of an existing annotation. This problem arises in the analysis of expression in model organisms, where it is desirable to leverage existing annotations for discovering novel transcripts. We present an algorithm for reference annotation-based transcript assembly and show how it can be used to rapidly investigate novel transcripts revealed by RNA-Seq in comparison with a reference annotation. The methods described in this article are implemented in the Cufflinks suite of software for RNA-Seq, freely available from http://bio.math.berkeley.edu/cufflinks. The software is released under the BOOST license. cole@broadinstitute.org; lpachter@math.berkeley.edu Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                hd@vt.edu
                bmpryor@email.arizona.edu
                tpeever@wsu.edu
                cblawren@vt.edu
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                25 March 2015
                25 March 2015
                2015
                : 16
                : 1
                : 239
                Affiliations
                [ ]Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061 USA
                [ ]Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721 USA
                [ ]Department of Plant Pathology, Washington State University, Pullman, Washington 99164 USA
                [ ]Current address: Department of Internal Medicine, Division of Oncology, and The Genome Institute, Washington University School of Medicine, St. Louis, MO 63110 USA
                Article
                1430
                10.1186/s12864-015-1430-7
                4387663
                25553907
                0856baf8-8de3-4568-bb6d-a4d81b9e9886
                © Dang et al.; licensee BioMed Central. . 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 January 2015
                : 2 March 2015
                Categories
                Database
                Custom metadata
                © The Author(s) 2015

                Genetics
                database,alternaria,fungal genome,sequence,annotation,comparative genomics,plant pathogen,allergy,saprophyte

                Comments

                Comment on this article