28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes.

          Nonsense-mediated mRNA decay (NMD) is probably the best characterized eukaryotic RNA degradation pathway. Through intricate steps, a set of NMD factors recognize and degrade mRNAs with translation termination codons that are positioned in abnormal contexts. However, NMD is not only part of a general cellular quality control system that prevents the production of aberrant proteins. Mammalian cells also depend on NMD to dynamically adjust their transcriptomes and their proteomes to varying physiological conditions. In this Review, we discuss how NMD targets mRNAs, the types of mRNAs that are targeted, and the roles of NMD in cellular stress, differentiation and maturation processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR.

            Cystic fibrosis is a life-limiting disease that is caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Phe508del is the most common CFTR mutation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonsense-mediated mRNA decay in humans at a glance.

              Nonsense-mediated mRNA decay (NMD) is an mRNA quality-control mechanism that typifies all eukaryotes examined to date. NMD surveys newly synthesized mRNAs and degrades those that harbor a premature termination codon (PTC), thereby preventing the production of truncated proteins that could result in disease in humans. This is evident from dominantly inherited diseases that are due to PTC-containing mRNAs that escape NMD. Although many cellular NMD targets derive from mistakes made during, for example, pre-mRNA splicing and, possibly, transcription initiation, NMD also targets ∼10% of normal physiological mRNAs so as to promote an appropriate cellular response to changing environmental milieus, including those that induce apoptosis, maturation or differentiation. Over the past ∼35 years, a central goal in the NMD field has been to understand how cells discriminate mRNAs that are targeted by NMD from those that are not. In this Cell Science at a Glance and the accompanying poster, we review progress made towards this goal, focusing on human studies and the role of the key NMD factor up-frameshift protein 1 (UPF1).
                Bookmark

                Author and article information

                Journal
                101636232
                42828
                Diseases
                Diseases
                Diseases (Basel, Switzerland)
                2079-9721
                29 October 2016
                19 October 2016
                December 2016
                29 March 2017
                : 4
                : 4
                : 32
                Affiliations
                Department of Biochemistry and Molecular Genetics, Gregory Fleming Cystic Fibrosis Research Center, Comprehensive Arthritis, Musculoskeletal, Bone, and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; kkeeling@ 123456uab.edu ; Tel.: +1-205-975-6585
                Article
                NIHMS826258
                10.3390/diseases4040032
                5370586
                085a6f99-d212-4366-91b7-220245636a81

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Article

                lysosomal storage diseases,nonsense mutation,suppression,premature termination codon,readthrough,nonsense-mediated mrna decay,translation termination,therapy,treatment

                Comments

                Comment on this article