65
views
0
recommends
+1 Recommend
1 collections
    28
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

          The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.

            Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment.

              Nanomaterials hold promise as multifunctional diagnostic and therapeutic agents. However, the effective application of nanomaterials is hampered by limited understanding and control over their interactions with complex biological systems. When a nanomaterial enters a physiological environment, it rapidly adsorbs proteins forming what is known as the protein 'corona'. The protein corona alters the size and interfacial composition of a nanomaterial, giving it a biological identity that is distinct from its synthetic identity. The biological identity determines the physiological response including signalling, kinetics, transport, accumulation, and toxicity. The structure and composition of the protein corona depends on the synthetic identity of the nanomaterial (size, shape, and composition), the nature of the physiological environment (blood, interstitial fluid, cell cytoplasm, etc.), and the duration of exposure. In this critical review, we discuss the formation of the protein corona, its structure and composition, and its influence on the physiological response. We also present an 'adsorbome' of 125 plasma proteins that are known to associate with nanomaterials. We further describe how the protein corona is related to the synthetic identity of a nanomaterial, and highlight efforts to control protein-nanomaterial interactions. We conclude by discussing gaps in the understanding of protein-nanomaterial interactions along with strategies to fill them (167 references).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 October 2015
                2015
                : 10
                : 10
                Affiliations
                [1 ]Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
                [2 ]Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, and Karolinska Institutet, Stockholm, Sweden
                [3 ]NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
                [4 ]Electron Microscopy Core Facility, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
                [5 ]Division of Metals & Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
                [6 ]Functional Materials Division, School of Information and Communication Technology, Royal Institute of Technology, Stockholm, Sweden
                RMIT University, AUSTRALIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BF MT. Performed the experiments: CV MP KH SL. Analyzed the data: CV PK BF MV JL MT. Contributed reagents/materials/analysis tools: CV PK MP MV JL BF MT. Wrote the paper: CV BF.

                [¤]

                Current address: Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden

                Article
                PONE-D-14-50625
                10.1371/journal.pone.0129008
                4596693
                26444829

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                Page count
                Figures: 5, Tables: 4, Pages: 20
                Product
                Funding
                This work was supported by Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (BF), the Swedish Cancer and Allergy Foundation (BF), the Swedish Cancer Society (JL), the Swedish Research Council (BF, JL), and the European Commission (FP7-NANOSOLUTIONS, grant agreement no. 309329) (BF) and FP7-eNANOMAPPER, grant agreement no. 604134) (BF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files. Additionally, all proteomics data generated in this study are deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org) with the dataset identifier PXD000766.

                Uncategorized

                Comments

                Comment on this article