12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tamoxifen Inhibits ER-negative Breast Cancer Cell Invasion and Metastasis by Accelerating Twist1 Degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Tamoxifen in the treatment of breast cancer.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition.

            The epithelial-mesenchymal transition (EMT), one of the main mechanisms underlying development of cancer metastasis, induces stem-like properties in epithelial cells. Bmi1 is a polycomb-group protein that maintains self-renewal, and is frequently overexpressed in human cancers. Here, we show the direct regulation of BMI1 by the EMT regulator, Twist1. Furthermore, Twist1 and Bmi1 were mutually essential to promote EMT and tumour-initiating capability. Twist1 and Bmi1 act cooperatively to repress expression of both E-cadherin and p16INK4a. In patients with head and neck cancers, increased levels of both Twist1 and Bmi1 correlated with downregulation of E-cadherin and p16INK4a, and was associated with the worst prognosis. These results suggest that Twist1-induced EMT and tumour-initiating capability in cancer cells occurs through chromatin remodelling, which leads to unfavourable clinical outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms.

              This article reviews the molecular structure, expression pattern, physiological function, pathological roles and molecular mechanisms of Twist1 in development, genetic disease and cancer. Twist1 is a basic helix-loop-helix domain-containing transcription factor. It forms homo- or hetero-dimers in order to bind the Nde1 E-box element and activate or repress its target genes. During development, Twist1 is essential for mesoderm specification and differentiation. Heterozygous loss-of-function mutations of the human Twist1 gene cause several diseases including the Saethre-Chotzen syndrome. The Twist1-null mouse embryos die with unclosed cranial neural tubes and defective head mesenchyme, somites and limb buds. Twist1 is expressed in breast, liver, prostate, gastric and other types of cancers, and its expression is usually associated with invasive and metastatic cancer phenotypes. In cancer cells, Twist1 is upregulated by multiple factors including SRC-1, STAT3, MSX2, HIF-1α, integrin-linked kinase and NF-κB. Twist1 significantly enhances epithelial-mesenchymal transition (EMT) and cancer cell migration and invasion, hence promoting cancer metastasis. Twist1 promotes EMT in part by directly repressing E-cadherin expression by recruiting the nucleosome remodeling and deacetylase complex for gene repression and by upregulating Bmi1, AKT2, YB-1, etc. Emerging evidence also suggests that Twist1 plays a role in expansion and chemotherapeutic resistance of cancer stem cells. Further understanding of the mechanisms by which Twist1 promotes metastasis and identification of Twist1 functional modulators may hold promise for developing new strategies to inhibit EMT and cancer metastasis.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2015
                11 April 2015
                : 11
                : 5
                : 618-628
                Affiliations
                1. Department of Breast and Thyroid Cancer Surgery, The First Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, China;
                2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA;
                3. Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA;
                4. Institute for Cancer Medicine and School of Basic Medical Sciences, Luzhou Medical College, Sichuan, China
                Author notes
                ✉ Corresponding author: Jianming Xu, PhD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. Phone: 713-798-6199; E-mail: jxu@ 123456bcm.edu

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv11p0618
                10.7150/ijbs.11380
                4400392
                25892968
                086c80b7-4ae1-4301-b0df-5a8bffb14c17
                © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.
                History
                : 17 November 2014
                : 9 January 2015
                Categories
                Research Paper

                Life sciences
                breast cancer,twist1,tamoxifen,twist1 degradation,lung metastasis
                Life sciences
                breast cancer, twist1, tamoxifen, twist1 degradation, lung metastasis

                Comments

                Comment on this article