12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biochemical characterization and chemical validation of Leishmania MAP Kinase-3 as a potential drug target

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protozoan parasites of the Leishmania genus have evolved unique signaling pathways that can sense various environmental changes and trigger stage differentiation for survival and host infectivity. MAP kinase (MAPK) plays a critical role in various cellular activities like cell differentiation, proliferation, stress regulation, and apoptosis. The Leishmania donovani MAPK3 ( LdMAPK3) is involved in the regulation of flagella length and hence plays an important role in disease transmission. Here, we reported the gene cloning, protein expression, biochemical characterizations, inhibition studies and cell proliferation assay of LdMAPK3. The recombinant purified LdMAPK3 enzyme obeys the Michaelis-Menten equation with K m and V max of LdMAPK3 was found to be 20.23 nM and 38.77 ± 0.71 nmoles ATP consumed/mg LdMAPK3/min respectively. The maximum kinase activity of LdMAPK3 was recorded at 35 °C and pH 7. The in-vitro inhibition studies with two natural inhibitors genistein (GEN) and chrysin (CHY) was evaluated against LdMAPK3. The K i value for GEN and CHY were found to be 3.76 ± 0.28 µM and K i = 8.75 ± 0.11 µM respectively. The IC 50 value for the compounds, GEN and CHY against L. donovani promastigotes were calculated as 9.9 µg/mL and 13 µg/mL respectively. Our study, therefore, reports LdMAPK3 as a new target for therapeutic approach against leishmaniasis.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Leishmaniasis: a review

          Leishmaniasis is caused by an intracellular parasite transmitted to humans by the bite of a sand fly. It is endemic in Asia, Africa, the Americas, and the Mediterranean region. Worldwide, 1.5 to 2 million new cases occur each year, 350 million are at risk of acquiring the disease, and leishmaniasis causes 70,000 deaths per year. Clinical features depend on the species of Leishmania involved and the immune response of the host. Manifestations range from the localized cutaneous to the visceral form with potentially fatal outcomes. Many drugs are used in its treatment, but the only effective treatment is achieved with current pentavalent antimonials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The relationship between leishmaniasis and AIDS: the second 10 years.

            To date, most Leishmania and human immunodeficiency virus (HIV) coinfection cases reported to WHO come from Southern Europe. Up to the year 2001, nearly 2,000 cases of coinfection were identified, of which 90% were from Spain, Italy, France, and Portugal. However, these figures are misleading because they do not account for the large proportion of cases in many African and Asian countries that are missed due to a lack of diagnostic facilities and poor reporting systems. Most cases of coinfection in the Americas are reported in Brazil, where the incidence of leishmaniasis has spread in recent years due to overlap with major areas of HIV transmission. In some areas of Africa, the number of coinfection cases has increased dramatically due to social phenomena such as mass migration and wars. In northwest Ethiopia, up to 30% of all visceral leishmaniasis patients are also infected with HIV. In Asia, coinfections are increasingly being reported in India, which also has the highest global burden of leishmaniasis and a high rate of resistance to antimonial drugs. Based on the previous experience of 20 years of coinfection in Europe, this review focuses on the management of Leishmania-HIV-coinfected patients in low-income countries where leishmaniasis is endemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

              Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been possible to ascribe function based solely on sequence similarity. Hence the connection of stimuli to protein phosphorylation networks remains enigmatic. The presence of numerous PKs with significant sequence similarity to known drug targets, as well as a large number of unusual kinases that might represent novel targets, strongly argue for functional analysis of these molecules.
                Bookmark

                Author and article information

                Contributors
                ps@nitw.ac.in
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 November 2019
                7 November 2019
                2019
                : 9
                : 16209
                Affiliations
                [1 ]ISNI 0000 0001 0008 3668, GRID grid.419655.a, Department of Biotechnology, , National Institute of Technology-Warangal, ; Telangana State, 506004 India
                [2 ]GRID grid.467228.d, School of Biochemical Engineering, , Indian Institute of Technology-Banaras Hindu University, ; Uttar Pradesh, 221005 India
                [3 ]ISNI 0000 0001 1887 8311, GRID grid.417972.e, Department of Biosciences and Bioengineering, , Indian Institute of Technology Guwahati, ; Guwahati, Assam 781039 India
                Article
                52774
                10.1038/s41598-019-52774-6
                6838069
                31700105
                086dc554-ac1f-4ef9-a098-aba82ad1035e
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 July 2019
                : 22 October 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                biochemistry,chemical biology,molecular biology
                Uncategorized
                biochemistry, chemical biology, molecular biology

                Comments

                Comment on this article