27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Methylation-Specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Copy number changes and CpG methylation of various genes are hallmarks of tumor development but are not yet widely used in diagnostic settings. The recently developed multiplex ligation-dependent probe amplification (MLPA) method has increased the possibilities for multiplex detection of gene copy number aberrations in a routine laboratory. Here we describe a novel robust method: the methylation-specific MLPA (MS-MLPA) that can detect changes in both CpG methylation as well as copy number of up to 40 chromosomal sequences in a simple reaction. In MS-MLPA, the ligation of MLPA probe oligonucleotides is combined with digestion of the genomic DNA–probe hybrid complexes with methylation-sensitive endonucleases. Digestion of the genomic DNA–probe complex, rather than double-stranded genomic DNA, allowed the use of DNA derived from the formalin treated paraffin-embedded tissue samples, enabling retrospective studies. To validate this novel method, we used MS-MLPA to detect aberrant methylation in DNA samples of patients with Prader–Willy syndrome, Angelman syndrome or acute myeloid leukemia.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.

          The modulation of DNA-protein interactions by methylation of protein-binding sites in DNA and the occurrence in genomic imprinting, X chromosome inactivation, and fragile X syndrome of different methylation patterns in DNA of different chromosomal origin have underlined the need to establish methylation patterns in individual strands of particular genomic sequences. We report a genomic sequencing method that provides positive identification of 5-methylcytosine residues and yields strand-specific sequences of individual molecules in genomic DNA. The method utilizes bisulfite-induced modification of genomic DNA, under conditions whereby cytosine is converted to uracil, but 5-methylcytosine remains nonreactive. The sequence under investigation is then amplified by PCR with two sets of strand-specific primers to yield a pair of fragments, one from each strand, in which all uracil and thymine residues have been amplified as thymine and only 5-methylcytosine residues have been amplified as cytosine. The PCR products can be sequenced directly to provide a strand-specific average sequence for the population of molecules or can be cloned and sequenced to provide methylation maps of single DNA molecules. We tested the method by defining the methylation status within single DNA strands of two closely spaced CpG dinucleotides in the promoter of the human kininogen gene. During the analysis, we encountered in sperm DNA an unusual methylation pattern, which suggests that the high methylation level of single-copy sequences in sperm may be locally modulated by binding of protein factors in germ-line cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisulfite genomic sequencing: systematic investigation of critical experimental parameters.

            Bisulfite genomic sequencing is the method of choice for the generation of methylation maps with single-base resolution. The method is based on the selective deamination of cytosine to uracil by treatment with bisulfite and the sequencing of subsequently generated PCR products. In contrast to cytosine, 5-methylcytosine does not react with bisulfite and can therefore be distinguished. In order to investigate the potential for optimization of the method and to determine the critical experimental parameters, we determined the influence of incubation time and incubation temperature on the deamination efficiency and measured the degree of DNA degradation during the bisulfite treatment. We found that maximum conversion rates of cytosine occurred at 55 degrees C (4-18 h) and 95 degrees C (1 h). Under these conditions at least 84-96% of the DNA is degraded. To study the impact of primer selection, homologous DNA templates were constructed possessing cytosine-containing and cytosine-free primer binding sites, respectively. The recognition rates for cytosine (>/=97%) and 5-methylcytosine (>/=94%) were found to be identical for both templates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COBRA: a sensitive and quantitative DNA methylation assay.

              We report here on a quantitative technique called COBRA to determine DNA methylation levels at specific gene loci in small amounts of genomic DNA. Restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfite-treated DNA as described previously. We show that methylation levels in the original DNA sample are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, we show that this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples. COBRA thus combines the powerful features of ease of use, quantitative accuracy, and compatibility with paraffin sections.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                16 August 2005
                : 33
                : 14
                : e128
                Affiliations
                1MRC-Holland bv Amsterdam, The Netherlands
                2Department of Clinical and Human Genetics, VU University Medical Center Amsterdam, The Netherlands
                3Department of Hematology, VU University Medical Center Amsterdam, The Netherlands
                Author notes
                *To whom correspondence should be addressed. Tel: +31 20 4891248; Fax: +31 20 6891149; Email: a.errami@ 123456vumc.nl
                Article
                10.1093/nar/gni127
                1187824
                16106041
                0874fe10-a03b-422a-af68-fc43905afcb1
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 20 May 2005
                : 23 June 2005
                : 25 July 2005
                Categories
                Methods Online

                Genetics
                Genetics

                Comments

                Comment on this article