88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.

          The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            METLIN: a metabolite mass spectral database.

            Endogenous metabolites have gained increasing interest over the past 5 years largely for their implications in diagnostic and pharmaceutical biomarker discovery. METLIN (http://metlin.scripps.edu), a freely accessible web-based data repository, has been developed to assist in a broad array of metabolite research and to facilitate metabolite identification through mass analysis. METLINincludes an annotated list of known metabolite structural information that is easily cross-correlated with its catalogue of high-resolution Fourier transform mass spectrometry (FTMS) spectra, tandem mass spectrometry (MS/MS) spectra, and LC/MS data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction between phenolics and gut microbiota: role in human health.

              Dietary phenolic compounds are often transformed before absorption. This transformation modulates their biological activity. Different studies have been carried out to understand gut microbiota transformations of particular polyphenol types and identify the responsible microorganisms. Although there are potentially thousands of different phenolic compounds in the diet, they are typically transformed to a much smaller number of metabolites. The aim of this review was to discuss the current information about the microbial degradation metabolites obtained from different phenolics and their formation pathways, identifying their differences and similarities. The modulation of gut microbial population by phenolics was also reviewed in order to understand the two-way phenolic-microbiota interaction. Clostridium and Eubacterium genera, which are phylogenetically associated, are other common elements involved in the metabolism of many phenolics. The health benefits from phenolic consumption should be attributed to their bioactive metabolites and also to the modulation of the intestinal bacterial population.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 July 2016
                2016
                : 7
                : 1144
                Affiliations
                [1] 1Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
                [2] 2Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
                Author notes

                Edited by: Enrica Pessione, University of Turin, Italy

                Reviewed by: Carl James Yeoman, Montana State University, USA; Miguel Gueimonde, Spanish National Research Council, Spain; Justin Joseph Donato, University of St. Thomas, USA

                *Correspondence: Pamela Vernocchi pamela.vernocchi@ 123456opbg.net

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01144
                4960240
                27507964
                08859e10-d0c3-4d54-b554-2fe9e6cf7189
                Copyright © 2016 Vernocchi, Del Chierico and Putignani.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 February 2016
                : 08 July 2016
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 236, Pages: 21, Words: 17621
                Categories
                Microbiology
                Review

                Microbiology & Virology
                gut microbiota,metabolome,state of health,diseases,dietary habits,omic approach

                Comments

                Comment on this article