179
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The nanosilica hazard: another variable entity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: not found
          • Article: not found

          Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VESTA: a three-dimensional visualization system for electronic and structural analysis

            A cross-platform program,VESTA, has been developed to visualize both structural and volumetric data in multiple windows with tabs.VESTArepresents crystal structures by ball-and-stick, space-filling, polyhedral, wireframe, stick, dot-surface and thermal-ellipsoid models. A variety of crystal-chemical information is extractable from fractional coordinates, occupancies and oxidation states of sites. Volumetric data such as electron and nuclear densities, Patterson functions, and wavefunctions are displayed as isosurfaces, bird's-eye views and two-dimensional maps. Isosurfaces can be colored according to other physical quantities. Translucent isosurfaces and/or slices can be overlapped with a structural model. Collaboration with external programs enables the user to locate bonds and bond angles in the `graphics area', simulate powder diffraction patterns, and calculate site potentials and Madelung energies. Electron densities determined experimentally are convertible into their Laplacians and electronic energy densities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.

              Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.
                Bookmark

                Author and article information

                Journal
                Part Fibre Toxicol
                Particle and Fibre Toxicology
                BioMed Central
                1743-8977
                2010
                3 December 2010
                : 7
                : 39
                Affiliations
                [1 ]Unit of Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
                [2 ]Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
                [3 ]Louvain centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier, 53.02, 1200 Brussels, Belgium
                Article
                1743-8977-7-39
                10.1186/1743-8977-7-39
                3014868
                21126379
                088a6a12-b96c-49b8-98f6-c0ea889af94b
                Copyright ©2010 Napierska et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 June 2010
                : 3 December 2010
                Categories
                Review

                Toxicology
                Toxicology

                Comments

                Comment on this article