42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

      research-article
      a , 1 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Deconstruction of lignocellulosic biomass to fuels and chemicals.

          Plants represent a vast, renewable resource and are well suited to provide sustainably for humankind's transportation fuel needs. To produce infrastructure-compatible fuels from biomass, two challenges remain: overcoming plant cell wall recalcitrance to extract sugar and phenolic intermediates, and reduction of oxygenated intermediates to fuel molecules. To compete with fossil-based fuels, two primary routes to deconstruct cell walls are under development, namely biochemical and thermochemical conversion. Here, we focus on overcoming recalcitrance with biochemical conversion, which uses low-severity thermochemical pretreatment followed by enzymatic hydrolysis to produce soluble sugars. Many challenges remain, including understanding how pretreatments affect the physicochemical nature of heterogeneous cell walls; determination of how enzymes deconstruct the cell wall effectively with the aim of designing superior catalysts; and resolution of issues associated with the co-optimization of pretreatment, enzymatic hydrolysis, and fermentation. Here, we highlight some of the scientific challenges and open questions with a particular focus on problems across multiple length scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface.

            A deeper mechanistic understanding of the saccharification of cellulosic biomass could enhance the efficiency of biofuels development. We report here the real-time visualization of crystalline cellulose degradation by individual cellulase enzymes through use of an advanced version of high-speed atomic force microscopy. Trichoderma reesei cellobiohydrolase I (TrCel7A) molecules were observed to slide unidirectionally along the crystalline cellulose surface but at one point exhibited collective halting analogous to a traffic jam. Changing the crystalline polymorphic form of cellulose by means of an ammonia treatment increased the apparent number of accessible lanes on the crystalline surface and consequently the number of moving cellulase molecules. Treatment of this bulky crystalline cellulose simultaneously or separately with T. reesei cellobiohydrolase II (TrCel6A) resulted in a remarkable increase in the proportion of mobile enzyme molecules on the surface. Cellulose was completely degraded by the synergistic action between the two enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative Colocalization Analysis of Multicolor Confocal Immunofluorescence Microscopy Images: Pushing Pixels to Explore Biological Phenomena

              Quantitative colocalization analysis is an advanced digital imaging tool to examine antigens of interest in immunofluorescence images obtained using confocal microscopes. It employs specialized algorithms to estimate the degree of overlap of fluorescence signals and thus enables acquiring important new information not otherwise obtainable using qualitative approaches alone. As raw confocal images have high levels of background, they should be prepared to become suitable for reliable calculation of colocalization coefficients by correcting it. We provide concise theoretical basis of quantitative colocalization analysis, discuss its limitations, and describe proper use of the technique. The use of quantitative colocalization analysis is demonstrated by studying bile salt export pump and multidrug resistance associated protein 2 in the liver and major basic protein and platelet activating factor receptor antigens in conjunctiva. The review is focused on the applicability and correct interpretation of the results of colocalization coefficients calculations.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                10 March 2017
                2017
                : 7
                : 44386
                Affiliations
                [1 ]Scion, 49 Sala Street, Private Bag 3020, Rotorua 3010, New Zealand
                Author notes
                Article
                srep44386
                10.1038/srep44386
                5345003
                28281670
                08a0e99a-495a-40ab-87b5-3e177a9313e5
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 October 2016
                : 07 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article