22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subthalamic Nucleus Deep Brain Stimulation Does Not Modify the Functional Deficits or Axonopathy Induced by Nigrostriatal α-Synuclein Overexpression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human- Snca expression and no effect on rat- Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications.

            Genomic triplication of the alpha-synuclein gene recently has been associated with familial Parkinson's disease in the Spellman-Muenter kindred. Here, we present an independent family, of Swedish-American descent, with hereditary early-onset parkinsonism with dementia due to alpha-synuclein triplication. Brain tissue available from affected individuals in both kindreds provided the opportunity to compare their clinical, pathological, and biochemical phenotypes. Of note, studies of brain mRNA and soluble protein levels demonstrate a doubling of alpha-synuclein expression, consistent with molecular genetic data. Pathologically, cornu ammonis 2/3 hippocampal neuronal loss appears to be a defining feature of this form of inherited parkinsonism. The profound implications of alpha-synuclein overexpression for idiopathic synucleinopathies are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microglia Acquire Distinct Activation Profiles Depending on the Degree of α-Synuclein Neuropathology in a rAAV Based Model of Parkinson's Disease

              Post-mortem analysis of brains from Parkinson's disease (PD) patients strongly supports microglia activation and adaptive immunity as factors contributing to disease progression. Such responses may be triggered by α-synuclein (α-syn), which is known to be the main constituent of the aggregated proteins found in Lewy bodies in the brains of PD patients. To investigate this we used a recombinant viral vector to express human α-syn in rat midbrain at levels that induced neuronal pathology either in the absence or the presence of dopaminergic cell death, thereby mimicking early or late stages of the disease. Microglia activation was assessed by stereological quantification of Mac1+ cells, as well as the expression patterns of CD68 and MCH II. In our study, when α-syn induced neuronal pathology but not cell death, a fast transient increase in microglia cell numbers resulted in the long-term induction of MHC II+ microglia, denoting antigen-presenting ability. On the other hand, when α-syn induced both neuronal pathology and cell death, there was a delayed increase in microglia cell numbers, which correlated with long-lasting CD68 expression and a morphology reminiscent of peripheral macrophages. In addition T-lymphocyte infiltration, as judged by the presence of CD4+ and CD8+ cells, showed distinct kinetics depending on the degree of neurodegeneration, and was significantly higher when cell death occurred. We have thus for the first time shown that the microglial response differs depending on whether α-syn expression results on cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, our data suggest that the microglial response is modulated by early events related to α-syn expression in substantia nigra and persists at the long term.
                Bookmark

                Author and article information

                Contributors
                caryl.sortwell@hc.msu.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 November 2017
                27 November 2017
                2017
                : 7
                : 16356
                Affiliations
                [1 ]ISNI 0000 0001 2150 1785, GRID grid.17088.36, Department of Translational Science & Molecular Medicine, Michigan State University, ; Grand Rapids, MI USA
                [2 ]ISNI 0000 0001 2150 1785, GRID grid.17088.36, MD/PhD Program, Michigan State University, ; Grand Rapids, MI USA
                [3 ]ISNI 0000 0001 2150 1785, GRID grid.17088.36, Neuroscience Graduate Training Program, Michigan State University, ; Grand Rapids, MI USA
                [4 ]ISNI 0000 0004 0453 6689, GRID grid.477988.d, Mercy Health Saint Mary’s, ; Grand Rapids, MI USA
                Author information
                http://orcid.org/0000-0002-5245-3832
                http://orcid.org/0000-0001-5802-5487
                http://orcid.org/0000-0003-0991-8275
                http://orcid.org/0000-0001-6026-9966
                http://orcid.org/0000-0003-2571-6753
                Article
                16690
                10.1038/s41598-017-16690-x
                5703955
                29180681
                08a22f4e-7438-41f9-bf0d-e07223ec2dc2
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 March 2017
                : 16 November 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article