7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of an epitope of SARS-coronavirus nucleocapsid protein

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, it was confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified and N protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          A novel coronavirus associated with severe acute respiratory syndrome.

          A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

            P Rota (2003)
            In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal.

              For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into virus particles. In this report we show that expressed coronavirus envelope protein M specifically interacted with coexpressed noncoronavirus RNA transcripts containing the short viral packaging signal in the absence of coronavirus N protein. Furthermore, this M protein-packaging signal interaction led to specific packaging of the packaging signal-containing RNA transcripts into coronavirus-like particles in the absence of N protein. These findings not only highlight a novel RNA packaging mechanism for an enveloped virus, where the specific RNA packaging can occur without the core or N protein, but also point to a new, biologically important general model of precise and selective interaction between transmembrane proteins and specific RNA elements.
                Bookmark

                Author and article information

                Contributors
                wujr@sunm.shcnc.ac.cn
                0086-21-54921376 , 0086-21-54921011 , ( , bsun@sibs.ac.cn
                Journal
                Cell Res
                Cell Res
                Cell Research
                Nature Publishing Group UK (London )
                1001-0602
                1748-7838
                June 2003
                : 13
                : 3
                : 141-145
                Affiliations
                [1 ]GRID grid.419092.7, ISNI 0000 0004 0467 2285, Institute of Biochemistry and Cell Biology, Institute of Materia Medica, Bioinformation Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ; Shanghai, 200031 China
                [2 ]Institute of Microbiology and Epidemiology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, 100071 China
                Article
                BF7290158
                10.1038/sj.cr.7290158
                7091728
                12862314
                08b42862-d405-4c78-b2ec-0a68afb183e9
                © Science Press 2003

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 1 June 2003
                : 1 June 2003
                : 1 June 2003
                Categories
                Article
                Custom metadata
                © IBCB, SIBS, CAS 2003

                Cell biology
                severe acute respiratory syndrome-coronavirus,necleocapsid protein,epitope,polyclonal antibody,antiserum

                Comments

                Comment on this article