14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune Tumor Microenvironment in Breast Cancer and the Participation of Estrogens and Its Receptors Into Cancer Physiopathology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer is characterized by cellular and molecular heterogeneity. Several molecular events are involved in controlling malignant cell process. In this sense, the importance of studying multiple cell alterations in this pathology is overriding. A well-identified fact on immune response is that it can vary depend on sex. Steroid hormones and their receptors may regulate different functions and the responses of several subpopulations of the immune system. Few reports are focused on the function of estrogen receptors (ERs) on immune cells and their roles in different breast cancer subtypes. Thus, the aim of this review is to investigate the immune infiltrating tumor microenvironment and prognosis conferred by it in different breast cancer subtypes, discuss the current knowledge and point out the roles of estrogens and its receptors on the infiltrating immune cells, as well as to identify how different immune subsets are modulated after anti-hormonal treatments in breast cancer patients.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide and macrophage function.

          At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxide. Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer.

            PURPOSE Preclinical data suggest a contribution of the immune system to chemotherapy response. In this study, we investigated the prespecified hypothesis that the presence of a lymphocytic infiltrate in cancer tissue predicts the response to neoadjuvant chemotherapy. METHODS We investigated intratumoral and stromal lymphocytes in a total of 1,058 pretherapeutic breast cancer core biopsies from two neoadjuvant anthracycline/taxane-based studies (GeparDuo, n = 218, training cohort; and GeparTrio, n = 840, validation cohort). Molecular parameters of lymphocyte recruitment and activation were evaluated by kinetic polymerase chain reaction in 134 formalin-fixed, paraffin-embedded tumor samples. Results In a multivariate regression analysis including all known predictive clinicopathologic factors, the percentage of intratumoral lymphocytes was a significant independent parameter for pathologic complete response (pCR) in both cohorts (training cohort: P = .012; validation cohort: P = .001). Lymphocyte-predominant breast cancer responded, with pCR rates of 42% (training cohort) and 40% (validation cohort). In contrast, those tumors without any infiltrating lymphocytes had pCR rates of 3% (training cohort) and 7% (validation cohort). The expression of inflammatory marker genes and proteins was linked to the histopathologic infiltrate, and logistic regression showed a significant association of the T-cell-related markers CD3D and CXCL9 with pCR. CONCLUSION The presence of tumor-associated lymphocytes in breast cancer is a new independent predictor of response to anthracycline/taxane neoadjuvant chemotherapy and provides useful information for oncologists to identify a subgroup of patients with a high benefit from this type of chemotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease.

              Naturally arising CD25+ CD4+ regulatory T (Treg) cells, most of which are produced by the normal thymus as a functionally mature T-cell subpopulation, play key roles in the maintenance of immunologic self-tolerance and negative control of a variety of physiological and pathological immune responses. Natural Tregs specifically express Foxp3, a transcription factor that plays a critical role in their development and function. Complete depletion of Foxp3-expressing natural Tregs, whether they are CD25+ or CD25-, activates even weak or rare self-reactive T-cell clones, inducing severe and widespread autoimmune/inflammatory diseases. Natural Tregs are highly dependent on exogenously provided interleukin (IL)-2 for their survival in the periphery. In addition to Foxp3 and IL-2/IL-2 receptor, deficiency or functional alteration of other molecules, expressed by T cells or non-T cells, may affect the development/function of Tregs or self-reactive T cells, or both, and consequently tip the peripheral balance between the two populations toward autoimmunity. Elucidation of the molecular and cellular basis of this Treg-mediated active maintenance of self-tolerance will facilitate both our understanding of the pathogenetic mechanism of autoimmune disease and the development of novel methods of autoimmune disease prevention and treatment via enhancing and re-establishing Treg-mediated dominant control over self-reactive T cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                01 March 2019
                2019
                : 10
                : 348
                Affiliations
                Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
                Author notes

                Edited by: Daniela F. Quail, McGill University, Canada

                Reviewed by: Luis De La Cruz-Merino, Hospital Universitario Virgen Macarena, Spain; Mallikarjun Bidarimath, Cornell University, United States

                *Correspondence: Jorge Morales-Montor jmontor66@ 123456biomedicas.unam.mx

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.00348
                6407672
                30881360
                08b6ab79-c185-4bdd-bd63-0ac491d8d609
                Copyright © 2019 Segovia-Mendoza and Morales-Montor.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2018
                : 11 February 2019
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 180, Pages: 16, Words: 13680
                Funding
                Funded by: Consejo Nacional de Ciencia y Tecnología 10.13039/501100007350
                Categories
                Immunology
                Review

                Immunology
                immune infiltration,breast cancer,estrogen receptor,estrogen receptor inhibitors,tumor microenvironment

                Comments

                Comment on this article