28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Absence of correlation between ex vivo susceptibility to doxycycline and pfteQpfmdt gene polymorphism in French Guiana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In French Guiana, doxycycline is used for both chemoprophylaxis and the treatment of malaria. The presence of isolates with reduced ex vivo susceptibility to doxycycline in French Guiana makes it critical to identify any genetic determinants contributing to the chemosusceptibility level of Plasmodium falciparum to doxycycline, such as pfmdt and pftetQ, which were recently identified as potential molecular markers in African isolates.

          Methods

          A Bayesian statistical approach was used to define different ex vivo doxycycline phenotypes. The pfmdt and pftetQ gene copy numbers were quantified by quantitative real-time polymerase chain reaction in 129 P. falciparum isolates collected between 2000 and 2010, and pftetQ, pfrps7, pfssurRNA, and pflsurRNA sequences were analysed after amplification by polymerase chain reaction.

          Results

          PftetQ and pfmdt copy numbers were not associated with reduced susceptibility to doxycycline in P. falciparum within French Guiana. Sequence analysis of the genes revealed five known single nucleotide polymorphisms. Three new SNPs were identified in the apicoplast ribosomal RNA long sub-unit ( pflsurRNA): C740T, A1875C and A1875T. These polymorphisms were not associated with reduced chemosusceptibility to doxycycline.

          Conclusions

          The present study does not validate pfmdt and pftetQ genes as molecular markers of decreased susceptibility to doxycycline in P. falciparum isolates in French Guiana.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

            The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with mefloquine. Increase in pfmdr1 copy number predicts failure even after chemotherapy with the highly effective combination of mefloquine and 3 days' artesunate. Monitoring of pfmdr1 copy number will be useful in epidemiological surveys of drug resistance in P falciparum, and potentially for predicting treatment failure in individual patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Update on acquired tetracycline resistance genes.

              This mini-review summarizes the changes in the field of bacterial acquired tetracycline resistance (tet) and oxytetracycline (otr) genes identified since the last major review in 2001. Thirty-eight acquired tetracycline resistant (Tc(r)) genes are known of which nine are new and include five genes coding for energy-dependent efflux proteins, two genes coding for ribosomal protection proteins, and two genes coding for tetracycline inactivating enzymes. The number of inactivating enzymes has increased from one to three, suggesting that work needs to be done to determine the role these enzymes play in bacterial resistance to tetracycline. In the same time period, 66 new genera have been identified which carry one or more of the previously described 29 Tc(r) genes. Included in the new genera is, for the first time, an obligate intracellular pathogen suggesting that this sheltered group of bacteria is capable of DNA exchange with non-obligate intracellular bacteria. The number of genera carrying ribosomal protection genes increased dramatically with the tet(M) gene now identified in 42 genera as compared with 24 and the tet(W) gene found in 17 new genera as compared to two genera in the last major review. New conjugative transposons, carrying different ribosomal protection tet genes, have been identified and an increase in the number of antibiotic resistance genes linked to tet genes has been found. Whether these new elements may help to spread the tet genes they carry to a wider bacterial host range is discussed.
                Bookmark

                Author and article information

                Contributors
                mariemura@yahoo.fr
                sbriolant@pasteur-cayenne.fr
                ddonato@pasteur-cayenne.fr
                bvolney@pasteur-cayenne.fr
                spelleau@pasteur-cayenne.fr
                lmusset@pasteur-cayenne.fr
                eric.legrand@pasteur.fr
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                25 July 2015
                25 July 2015
                2015
                : 14
                : 286
                Affiliations
                [ ]Laboratoire de Parasitologie, Centre National de Référence du Paludisme aux Antilles, Guyane, Institut Pasteur de la Guyane, Cayenne Cedex, France
                [ ]Direction Interarmées du Service de Santé en Guyane, Quartier La Madeleine, BP 6019, 97306 Cayenne Cedex, French Guiana
                [ ]Institut de Recherche Biomédicale des Armées, BP 73, 91223 Brétigny sur Orge Cedex, France
                [ ]Unité de Recherche Génétique et Génomique des Insectes Vecteurs, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France
                Article
                788
                10.1186/s12936-015-0788-y
                4513625
                26206143
                08ba5854-3077-44f4-9585-500502993caf
                © Mura et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 22 December 2014
                : 1 July 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Infectious disease & Microbiology
                malaria,doxycycline,molecular markers,anti-malarial drug resistance,french guiana

                Comments

                Comment on this article