57
views
0
recommends
+1 Recommend
0 collections
    15
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herein we demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular Ca 2+ waves. In pulmonary artery smooth muscle cells (PASMCs) it has been proposed that nicotinic acid adenine dinucleotide phosphate (NAADP) triggers increases in cytoplasmic Ca 2+ via L-SR junctions, in a manner that requires initial Ca 2+ release from lysosomes and subsequent Ca 2+-induced Ca 2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be < 400 nm and thus beyond the resolution of light microscopy, which has restricted detailed investigations of the junctional coupling process. The present study utilizes standard and tomographic transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. We show that L-SR nanojunctions are prominent features within these cells and estimate that the junctional membrane separation and extension are about 15 nm and 300 nm, respectively. Furthermore, we develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca 2+ signal information as input data. Simulations of NAADP-dependent junctional Ca 2+ transients demonstrate that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca 2+ signals and simulated Ca 2+ transients within L-SR junctions, we estimate that “trigger zones” comprising 60–100 junctions are required to confer a signal of similar magnitude. This is compatible with the 110 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca 2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are therefore a pre-requisite for efficient Ca 2+signal coupling and may contribute to cellular function in health and disease.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy as a cell death and tumor suppressor mechanism.

          Autophagy is characterized by sequestration of bulk cytoplasm and organelles in double or multimembrane autophagic vesicles, and their delivery to and subsequent degradation by the cell's own lysosomal system. Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Increasing lines of evidence indicate that these molecular mechanisms may be recruited by an alternative, caspase-independent form of programmed cell death, named autophagic type II cell death. In some settings, autophagy and apoptosis seem to be interconnected positively or negatively, introducing the concept of 'molecular switches' between them. Additionally, mitochondria may be central organelles integrating the two types of cell death. Malignant transformation is frequently associated with suppression of autophagy. The recent implication of tumor suppressors like Beclin 1, DAP-kinase and PTEN in autophagic pathways indicates a causative role for autophagy deficiencies in cancer formation. Autophagic cell death induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis.

            Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface.

              The ER-mitochondrial junction provides a local calcium signaling domain that is critical for both matching energy production with demand and the control of apoptosis. Here, we visualize ER-mitochondrial contact sites and monitor the localized [Ca(2+)] changes ([Ca(2+)](ER-mt)) using drug-inducible fluorescent interorganelle linkers. We show that all mitochondria have contacts with the ER, but plasma membrane (PM)-mitochondrial contacts are less frequent because of interleaving ER stacks in both RBL-2H3 and H9c2 cells. Single mitochondria display discrete patches of ER contacts and show heterogeneity in the ER-mitochondrial Ca(2+) transfer. Pericam-tagged linkers revealed IP(3)-induced [Ca(2+)](ER-mt) signals that exceeded 9 microM and endured buffering bulk cytoplasmic [Ca(2+)] increases. Altering linker length to modify the space available for the Ca(2+) transfer machinery had a biphasic effect on [Ca(2+)](ER-mt) signals. These studies provide direct evidence for the existence of high-Ca(2+) microdomains between the ER and mitochondria and suggest an optimal gap width for efficient Ca(2+) transfer. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000Research (London, UK )
                2046-1402
                22 April 2014
                2014
                : 3
                : 93
                Affiliations
                [1 ]Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, V6T 1Z3, Canada
                [2 ]Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
                [3 ]Current address: Institute for Biophysics, Medical University of Graz, Graz, 8010, Austria
                [1 ]Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
                [1 ]Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
                [1 ]Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of London, London, UK
                Author notes

                NF and CvB conceived the electron microscopy work, quantitative model, simulations and quantitative analysis of the results. AME and OAO obtained the background optical microscopy study. NF, OAO, CvB and AME contributed to writing the manuscript. All authors were involved in the revision of the draft manuscript and have agreed to the final content.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Article
                10.5256/f1000research.3986.r4530
                4126599
                08cf46b2-42d0-45a1-9ccd-9058ff8f6132
                Copyright: © 2014 Fameli N et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

                History
                : 8 April 2014
                Funding
                Funded by: Canadian Institute of Health Research
                Award ID: CIHR MOP-84309
                Funded by: British Heart Foundation Programme
                Award ID: RG/12/14/29885
                This work was supported by Grant No. CIHR MOP-84309 from the Canadian Institute of Health Research (CvB) and by the British Heart Foundation Programme Grant RG/12/14/29885 (AME).
                The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip.t
                Categories
                Research Article
                Articles
                Cell Signalling
                Cell Signalling & Trafficking Structures
                Macromolecular Assemblies & Machines

                Comments

                Comment on this article